thumbnail of 2026-01-02_07-54-23.png
thumbnail of 2026-01-02_07-54-23.png
2026-01-02_07-54-23 png
(112.79 KB, 1881x1010)
These are the numbers from our database.

julia> db = SQLite.DB("sql/wn.db")
SQLite.DB("sql/wn.db")

julia> sql = WeatherNews.DB.sql_fn(db)
(::WeatherNews.DB.var"#sql#sql_fn##0"{SQLite.DB}) (generic function with 2 methods)

julia> q = """
       SELECT title,
              SUM(c) AS n
         FROM (SELECT seg.id,
                      seg.n AS title,
                      s.caster_id = ? AS c
                 FROM segment seg
                      LEFT JOIN schedule s ON s.segment_id = seg.id
                      JOIN caster c ON c.id = s.caster_id
                WHERE s.jst LIKE '2025%'
                ORDER BY seg.id) seg2
        GROUP BY title
        ORDER BY id;
       """;

julia> casters = ["ailin", "sayane", "matsu", "shirai", "takayama", "komaki2018", "tokita", "ogawa", "uozumi", "aohara2023", "okamoto2023", "tanabe2025", "matsumoto2025", "kawabata", "fukuyoshi"];

julia> count2025 = map(caster -> (caster => sql(q, [caster_id[caster]])), casters);

julia> tab2025 = reduce((res, pair) -> hcat(res, DataFrame(pair.first => pair.second[!, :n]); makeunique=true), count2025; init=count2025[1].second[!, :title])
8×16 DataFrame
 Row │ x1           ailin  sayane  matsu  shirai  takayama  komaki2018  tokita  ogawa  uozumi  aohara2023  okamoto2023  tanabe2025  matsumoto2025  kawabata  fukuyoshi 
     │ String       Int64  Int64   Int64  Int64   Int64     Int64       Int64   Int64  Int64   Int64       Int64        Int64       Int64          Int64     Int64     
─────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
   1 │ Morning          0       0      0       0         0           0       0     29      72          71            0          27             28         0         75
   2 │ Sunshine         0       1      1      15         0           0       0     36      66          73            3          34             38         9         29
   3 │ Coffee Time      2       5    100      21         0           0       9     23      30          33           22          30             33        37          4
   4 │ Afternoon       41      24      1      48         0          17      47     51      23          24           21          14              9        25          0
   5 │ Evening         55       0      0       7         0          79      90     21       1           5           79           0              1         1          0
   6 │ Moon            67       0      0       0         0         121      55     31       0           1           77           0              0         0          0
   7 │ _                4       0      0       0         0           0       1      0       0           0            1           0              0         0          0
   8 │ au PAY           5       3      3       5         0           7       8      9       8           8            7           3              3         0          0