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ABSTRACT

e model of ideal uid ow around a cylindrical obstacle exhibits a long-established physical picture,
where originally straight streamlines are deected over the whole space by the obstacle. Inspired by
transformation optics and metamaterials, recent theories have proposed the concept of uid cloaking,
which is able to recover the straight streamlines, as if the obstacle did not exist. However, such a cloak,
similar to all previous transformation-optics-based devices, relies on complex metamaterials with
inhomogeneous parameters and is dicult to implement. Here we deploy the theory of scaering
cancellation and report on the experimental realization of a uid-ow cloak without metamaterials.is
cloak is realized by engineering the geometry of the uid channel, which eectively cancels the dipole-like
scaering of the obstacle.e cloaking eect is demonstrated through the direct observation of recovered
straight streamlines in the uid ow. Our work sheds new light on conventional uid control and may nd
application in microuidic devices.
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INTRODUCTION

Ideal uid ow around a cylinder is a fundamen-
tal problem discussed in many textbooks on uid
mechanics [1]. Being inviscid and incompressible,
an ideal uid satises the mass continuity equation,
which can be simplied into Laplace’s equation at
steady states.When encountering a circular cylinder,
the ideal uid no longer follows straight streamlines,
but ows around the cylinder with deected stream-
lines that are described by a conformal mapping
[1].is model provides a physical picture as a way
to understand general uid ow in uid mechanics
when a complex-shaped obstacle or uid viscosity is
involved.

Recently, with the inspiring development of
transformation optics and metamaterials, substan-
tial interest has arisen in constructing invisibil-
ity cloaking devices that are able to hide an ob-
ject from external physical elds. ese kinds of
transformation-optics cloaking devices were rstly
proposed and realized for electromagnetic waves
[2–13], and then extended to acoustic waves, heat
owandotherelds orwaveforms [14–22]. In 2011,
this concept was further extended to uid ow [23].

However, similar to all previous transformation-
optics devices, the design of this uid-ow cloak ex-
hibits spatially variant material parameters that re-
quire complex metamaterials, and thus is dicult
to realize [24–29]. For example, the recent imple-
mentation of such a transformation-based uid-ow
cloak relied on 10 layers ofmetamaterialmicrostruc-
tures, as well as a uid background lled with micro-
cylinders to avoid impedance mismatch [25].

Scaering cancellation is another powerful ap-
proach for cloak design. Originally proposed for
plasmonic particles in quasistatic electric elds [30],
it has recently been extended to magnetic elds
[31–33] andheat conduction [34,35].However, the
possibility of its application inuid control has never
been discussed.

Here we apply the approach of scaering can-
cellation to uid control, and construct a uid-ow
cloak that is capable of hiding a cylindrical obstacle
without disturbing the straight external streamlines
(see the movie in Supplementary Data demonstrat-
ing the eectiveness of such auid cloak). In particu-
lar, the use of scaering cancellation in uid ow has
an unprecedented feature, i.e. being ‘metamaterial-
free’—our uid cloak is realized by changing the
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local geometry of the uid channel, rather than em-
ploying any complexmetamaterial design. By inject-
ing dye particles into the uid ow, we have directly
observed the successful recovery of straight stream-
lines passing through the obstacle, as if the obstacle
did not exist.

DESIGNING A FLUID-FLOW CLOAK

Weshallrstly point out that the idealuidwith zero
viscosity does, in fact, not exist in nature (it is ‘dry
water’, as stated by John von Neumann [36]). e
ow of a real uid with nite viscosity is governed by
the Navier-Stokes equation, which has nearly no an-
alytical solution due to its non-linear viscosity term.
Nevertheless, a viscous uid ow in a narrow gap
between two parallel plates, known as Hele-Shaw
ow, can be described by a scalar potential function,
exhibiting similar features of two-dimensional (2D)
ideal uid ow [1].Moreover, Hele-Shaw ow plays
a signicant role in microuidic devices and plastic-
forming manufacturing operations, where a realistic
cloak may nd useful application.

Let us start with Fig. 1a, which depicts the ideal
uid ow around a cylinder with a radius R1 in a 2D
geometry [1]. By denoting the stream function asψ
and the velocity potential as φ (here ∇φ gives the
ow velocity v̄; ψ and φ satisfy Cauchy-Riemann
conditions), we can describe the ow with a com-
plex potentialw (z) = φ(x, y)+ iψ(x, y) in the
complex plane z = x + i y [1]. Note that the ve-
locity equipotential lines (i.e. constant φ) and the
streamlines (i.e. constantψ) are orthogonal to each
other.erefore, either the real part or the imaginary
part of the complex potential is sucient to describe
the ideal ow.Without the cylinder, the original uni-
form owwith straight streamlines exhibits the com-
plex potential w = U z, where U is the speed of
the stream that ows uniformly in the x̂ direction.
epresenceof the cylinderdeects theowaccord-
ing to the conformalmappingof z → z + R2

1/z [1].
us, the complex potential w is mapped to w =

U (z + R2
1/z) in the region outside of the cylinder

(i.e. |z| > R1). Note that the newly produced term
U R2

1/z corresponds to the complex potential of a
‘dipole’-like doublet (i.e. a point source and a point
sink placed extremely close to each other, similar to a
dipole of positive charge and negative charge in elec-
tromagnetics), which has the dipole strength vec-
tor −2πU R2

1 x̂ . erefore, in the language of elec-
tromagnetics, the cylinder induces a ‘dipole eld’ of
uid ux, disturbing the ow over the entire space.

is similarity to electromagnetics implies that
it is possible to construct a uid cloak by applying
scaering cancellation. Indeed, we can consider a
cloak as shown in Fig. 1b, which consists of a shell
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Figure 1. Design of a uid cloak. (a) Streamlines for 2D ideal

uid ow around a circular cylinder with a radius R 1. (b) A

hypothetical uid cloak that can guide uid ow around the

cylindrical obstacle without disturbing the external straight

streamlines. The cloak has an outer radius R 2 and inner ra-

dius R 1. (c) Conceptual illustration of a uid cloak for the

ow in a narrow uid channel with a height of hb . The uid

cloak is realized by increasing the height of the uid channel

to h s .

with an outer radius R2 and an inner radius R1 that
encloses the cylindrical obstacle completely. is
cloak can guide the uid ux smoothly around the
obstacle, leaving the external uid ux undisturbed.
In previous magnetic/thermal cloaks [31,34,35]
the 2D calculation from Laplace’s equation requires
their magnetic permeability/thermal conductivity
to take the relative value of (R2

2 + R2
1)/(R

2
2 − R2

1).
By the same token, we can simply write down the
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mathematical condition of the uid cloak as

ρ2 =
R2
2 + R2

1

R2
2 − R2

1

ρ1. (1)

Here ρ1 is the uid density in the background, and
ρ2 is that inside the cloak shell.

However, we still have two problems to tackle.
Firstly, Equation (1) requires the uid density inside
the cloak to be compressed compared to that in the
background. is contradicts the incompressibility
of the ideal uid as well as most real uids in gen-
eral. Secondly, Equation (1) is based on Laplace’s
equation, which applies only to the ideal uid that
has negligible viscosity. However, a real uid must
contain nite viscosity (an extremely low viscosity in
a real uid also comes along with an extremely high
Reynoldnumber (Re1),marking theonsetof tur-
bulence). e inuence of the viscosity remains an
issue for the cloaking condition in Equation (1).

To tackle the problems mentioned above, we
consider the creeping owwith a low Reynold num-
ber (Re  1) in a narrow gap between two plates,
which is known asHele-Shaw ow. In this case, a vis-
cous ow can be simplied into an ideal uid ow
satisfying Laplace’s equation [1]. Hence, the prob-
lem of viscosity can be circumvented. As illustrated
in Fig. 1c, we consider uid with a density ρ1 that
ows into a narrow channel with a height of hb.
A solid cylinder with a radius R1 that penetrates
through the channel serves as a cylindrical obstacle.
So, it canbe expected that the viscousow in thenar-
row channel in the presence of the cylindrical obsta-
clewill behave like thepicture inFig. 1a (therewill be
some discrepancies in thin layers close to the bound-
ary of the obstacle; to be discussed later).

Now we design the cloak. As mentioned above,
it is impractical to compress the uid density to ful-
ll the cloaking condition inEquation (1).However,
we can emulate a higher local uid density ρ2 by
extending the height h s of the channel within the
cloak shell region, as illustrated in Fig. 1c (see de-
tails in Supplementary Data). Changing the height
of the uid channel is practically feasible in many
situations. For instance, the height of the Hele-
Shaw cell has been engineered to control the pre-
cipitate paerns and viscous ngering [37,38]. In
many microuidic applications, the uid channels
are fabricated with 3D lithography [39], which can
conveniently fabricate the cloak shell region with
high resolution.According tomass conservation, the
extended height required to construct a uid-ow
cloak satises the formula below:

h s =
R2
2 + R2

1

R2
2 − R2

1

hb. (2)
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Figure 2. Schematic diagram of the experimental set-up.

The glycerin that was dyed with white paint was rst

pumped into a sink through a wide rubber tube and then it

owed into a rectangular channel uniformly. The indicators,

glycerin dyed with black dye, were injected into the channel

manually with injection syringes through the injection tubes

at a steady state. The owing channel has a width of 50 mm

and a length of 146 mm. A piece of glass plate was placed

on top of the samples to enclose the channel. The shell re-

gion was extended downwards, like a trough surrounding

the obstacle. The heights of the background and effective

shell region are hb = 5 mm and h s = 10 mm, respectively.

The entire process was recorded by a camera from the top.

It is worth mentioning that the value of h s in
Equation (2) is only an estimation.e no-slip con-
dition (i.e. only zero velocity is allowed at the bound-
ary) gives rise to distortion of streamlines in the
Hele-Shaw ow in the vicinity of the boundaries of
the obstacle, being dierent from the ideal uid ow.
Hence, the optimal height for the uid-ow cloak
shouldbe slightly shied fromh s calculatedbyEqua-
tion (2).e method we used to optimize h s will be
discussed in a later section.

Figure 2 shows the schematic diagram of the ex-
perimental set-up. We designed a rectangular chan-
nel with dimensions 146 mm× 50 mm× 5 mm. A
cylindrical obstacle with a radius R1 = 8 mm was
placed at the center of the channel. As the uid is
aected by gravity, we extruded the cloak shell re-
gion with an outer radius R2 = 14 mm along−ẑ di-
rection, like a trench surrounding the obstacle.e
height of the shell region, measured from the top of
the owing channel to the boom of the trench, is
represented by h s. During the experiment, an electri-
cally driven piston pumpwas used to pump the uid
into the set-up through a thick rubber tube.e uid
rst lled up a sink and then owed into the channel
uniformly. Glycerin was used in our demonstration
due to its high viscosity (∼0.63 Pa · s for 95% glyc-
erin solution at room temperature).

To achieve the scaering-cancellation-based
uid-ow cloak, the uid ow must be governed by
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Figure 3. Optimization of the cloak geometry. The simula-

tion, using the same set-up as the experiment, was repeated

with different h s in COMSOLMultiphysics 5.2. The minimum

of the dened y -variation is obtained when h s = 10 mm

(represented by a red dot). The inset shows the simulation

result when h s = 10 mm. The color bar represents the mag-

nitude of velocity. The circle with a black solid line shows the

cloaking shell. The lines and arrows in a teal color represent

the streamlines and the direction of the ow, respectively.

The streamlines in the background region remain straight.

the Laplace equation, indicating that the Reynold
number needs to be close to zero. In other words,
high viscosity and low velocity are required to reach
the limit of the Hele-Shaw ow approximation.
e Reynold number is ∼0.08 in our case (see the
calculations in Supplementary Data). Moreover,
the diameter of the obstacle 2R1 = 16 mm is larger
than the gap of the channel hb = 5 mm, which is
consistent with the Hele-Shaw ow [1].

Here we introduce our optimization method for
the height of the cloak shell. e initial value of
h s= 9.85mm is obtained fromEquation (2).ere-
fore, the simulation, which uses the same set-up as
the experiment, was repeatedwith a range of h s close
to 9.85 mm in COMSOL Multiphysics 5.2 in or-
der to obtain the optimized h s. e creeping ow
that is governed by Stokes equations was used in the
simulation. e optimized h s should show straight
streamlines in the background region, as shown in
Fig. 1b. Hence, we rst extracted the y -coordinates
of 40 streamlines, which were spaced equally in
the y -direction, from each simulation. Next, we re-
moved those y -coordinates that were far away from
the obstacle or located inside the cloak shell re-
gion (see Supplementary Fig. 1). e standard de-
viation of remaining y -coordinates extracted from
each streamline was calculated individually. Finally,
we dened y -variation as themean of these standard
deviations of all streamlines.

e dependence of y -variation on h s is illustrated
in Fig. 3, and the optimized h s, which should give
the smallest y -variation, is shown to be 10mm.Note
that y -variation is very close to the minimum when

h s = 9.85 mm. e inset demonstrates the simula-
tion result when h s = 10 mm. e color bar rep-
resents the magnitude of total velocity. e lines
and arrows in teal denote the streamlines and direc-
tion of owing velocity, respectively. As anticipated,
the streamlines are almost undisturbed in the back-
ground region.

DEMONSTRATION OF THE FLUID-FLOW
CLOAK

ree samples were prepared: (i) a reference sam-
ple without any obstacle, (ii) an obstacle sample
without a cloak and (iii) an obstacle sample with a
cloak. e movie provided in Supplementary Data
recorded the dynamic process of the uid ow pass-
ing by the obstacle. Despite the fact that the cloak is
designed for steady states, we can see that the cloak-
ing eect also works well for a dynamic scenario.
We extracted snapshots at 4 seconds and 10 seconds
of the video, as representative situations in the dy-
namic and steady cases (see illustrations in Fig. 4a–
c and g–i). As mentioned before, the experiments
were repeated with three samples and the glycerin
was input from the le side of the snapshots. Four
streamlines were visualized by the black indicators
and labeled by indices ‘1’, ‘2’, ‘3’ and ‘4’ (Fig. 4a).
For quantitative analysis, we also numerically traced
the central position of each streamline, as ploed in
Fig. 4d–f and j–l, which correspond to the snapshots
in Fig. 4a–c and g–i, respectively.

Figure 4a, d, g and j verify that in the absence
of any obstacle, the ow generated by the pump is
uniform and the streamlines ow along straight tra-
jectories with almost the same velocity.e vaguely
visible shadows presented in Fig. 4a and g were just
the reections of the camera lens by the glass plate
placed on top of the sample. By contrast, in the pres-
ence of the cylindrical obstacle, the uid ow was
blocked by the obstacle and the streamlines were
deected to the upper and lower sides of the ob-
stacle (Fig. 4b, e, h and k). Although the side walls
in our experiment might slightly reduce the distor-
tion of streamlines in their vicinities, Fig. 4h and k
still showed a similar paern to Fig. 1a. Note that
in Fig. 4b and e, the four streamlines were halfway
in their detour around the obstacle. Because of the
longerdetour, the streamlines labeled ‘2’ and ‘3’were
slower than those labeled ‘1’ and ‘4’.is delay in the
streamlines close to the obstacle is more evidence of
the existence of the obstacle, apart from the apparent
streamline deection around the obstacle.

e results for the obstacle samplewith the cloak,
which demonstrate the realization of uid cloak-
ing, are shown in Fig. 4c, f, i and l. e cloaking
shell region is denoted by a pink doed circle. As
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