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Abstract—Accurate face recognition techniques make a series
of critical applications possible: policemen could employ it to
retrieve criminals’ faces from surveillance video streams; cross
boarder travelers could pass a face authentication inspection line
without the involvement of officers. Nonetheless, when public
security heavily relies on such intelligent systems, the designers
should deliberately consider the emerging attacks aiming at
misleading those systems employing face recognition.

We propose a kind of brand new attack against face recogni-
tion systems, which is realized by illuminating the subject using
infrared according to the adversarial examples worked out by
our algorithm, thus face recognition systems can be bypassed or
misled while simultaneously the infrared perturbations cannot
be observed by raw eyes. Through launching this kind of attack,
an attacker not only can dodge surveillance cameras. More
importantly, he can impersonate his target victim and pass the
face authentication system, if only the victim’s photo is acquired
by the attacker. Again, the attack is totally unobservable by
nearby people, because not only the light is invisible, but also the
device we made to launch the attack is small enough. According
to our study on a large dataset, attackers have a very high success
rate with a over 70% success rate for finding such an adversarial
example that can be implemented by infrared. To the best of our
knowledge, our work is the first one to shed light on the severity
of threat resulted from infrared adversarial examples against
face recognition.

I. INTRODUCTION

With the advances of deep learning (DL) and pattern
recognition, face recognition (FR) systems powered by these
technologies are evolving rapidly, becoming increasingly capa-
ble over years. Today, the state of the art FR system can already
outperform humans in terms of recognition accuracy [24],
[25], [27], [30]. This enables its wide deployment in the
real world, serving various applications such as attendance
recording, device login, and even border inspection.

Challenges of real-world adversarial learning. Despite
the great enhancement in accuracy, existing FR techniques,
however, are actually not as reliable as one expects. Prior
research shows that a picture, with only minor changes to its
pixels, could fool the recognition system into misidentifying
one subject as another [4], [26]. Such an attack, known as
adversarial learning, has been found to be hard to defend
against [7], particularly when the adversary is capable of
arbitrarily changing the input of the FR system, e.g., editing
every pixel on a picture. In reality, however, he may end up
with only limited control, since oftentimes, the input to the
system, e.g. images, is captured by the device like surveillance

camera, to which the adversary does not have direct access,
making a lot of adversarial examples unrealistic.

To bridge the gap between the theoretic results and real-world
constraints, limited effort has been made recently on practical
adversarial learning. As a prominent example, a recent study
demonstrates that it is feasible to find adversarial examples with
all the changes made around one’s eyes, so a 3D-printed special
glass frame can help one impersonate a different individual
during FR-based authentication [23]. Along the similar line,
another study reports the possibility to strategically perturb the
images of stop signs, using a printed-out alternative or stickers
to mislead a Deep Neural Network (DNN) to classifying the
stop sign into a speed limit [6].

Despite the first steps these studies took, the attacks they
propose, however, are still less practical. 3D-printed glasses are
cool but also conspicuous, which could easily arouse suspicion.
Printed signs and stickers only work on simple targets like
stop signs. What less clear now is how similar techniques can
be applied to generate realistic makeup to cheat FR systems.
So far, how to induce recognition flaws in a realistic, less
detectable way remains to be an open question.

Invisible mask attack. In this paper, we present the first ap-
proach that makes it possible to apply automatically-identified,
unique adversarial example to human face in an inconspicuous
way, and completely invisible to human eyes. As a result,
the adversary masquerading as someone else will be able to
walk on the street, without any noticeable anomaly to other
individuals but appearing to be a completely different person
to the FR system behind surveillance cameras. This is achieved
by using Infrared (IR), which cannot be seen by human eyes
but can still be captured by most street cameras, surveillance
devices and even smartphone cameras today. Given the tiny
sizes of lit IR LEDs, smaller than a penny, we show that they
can be easily embedded into a cap, and can also be hidden in
an umbrella and possibly even hair or a wig. Once the devices
are turned on, infrared dots will be projected on the strategic
spots on the carrier’s face, subtly altering her facial features
to induce a misclassification in an FR system. This helps the
attacker to evade detection or more seriously, through adjusting
the positions, sizes and strengths of the dots, to impersonate a
different person to pass FR-based authentication. The attack is
called invisible mask attack (IMA) in our research.

Launching an IMA is nontrivial. To find out how to
strategically deploy LEDs and set their parameters, we have
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to seek adversarial examples that fit right in the shape, size,
lightness and color of infrared prints which those devices
are capable of generating. For this purpose, we developed an
algorithm that searches adversarial examples for the attacker-
victim pair in which the perturbations are the combination of
dots that can be lit by infrared LEDs, making the adversarial
examples implementable. Moreover, we designed a device that
consists of three infrared LEDs on the peak of a cap, with
which attacker can implement adversarial examples to attack
real world systems. To help attackers implement the examples
solved by our algorithm on the cap device, we designed a
calibration tool with which attackers can adjust the LEDs on
cap with ease.

In our experiment, with our developed algorithm and device,
we successfully launched both dodging and impersonation
attacks. The success rate for dodging is 100 percents and
for the impersonation, the possibility of finding adversarial
examples is over 70%, according to our large scale study over
LFW data set.

Contributions. We summarize our contributions as follows:
• Infrared-based stealthy facial morphing. We come up with

the first infrared based techniques capable of stealthily
morphing one’s facial features to avoid FR detection or
impersonate a different individual. Our study shows that
this is completely feasible, even in the presence of a
real-world mainstream FR systems. The outcomes of
the research make an important step toward practical
adversarial learning, showing that the attacks on DNN-
powered FR systems are indeed realistic.

• New algorithm for finding actionable adversarial examples.
We developed a new algorithm to search for adversarial
examples under the constraints set by the limitations of
commercial-off-the-shelf LEDs. Our approach can find
the attack instances satisfying the constraints with a high
probability. We further show that such instances can be
practically constructed through deploying the LEDs and
adjusting their brightness and positions.

• Implementation and evaluation. We implemented our
attacks against FaceNet, a popular FR system, and
demonstrated the effectiveness of our techniques against
this real-world system. Besides, we launched a large scale
study over LFW data set to demonstrate the possibilities
of working out an adversarial example.

II. BACKGROUND

Face embeddings. Face embedding is the technique that
utilizes a DNN to map a photo of a face into a vector. This
allows a pair of face photos to be compared by calculating the
distance between their vectors, as they are all in the shared
vector space. Face embedding enables face authentication, face
searching and face clustering, through thresholding the distance
between photos, calculating a given photo’s nearest neighbors
and clustering a set of photos, based upon their vectors. The
most famous face embedding system is FaceNet [22], built by
Schroff et al. at Google in 2015, which achieved a 99.63%
accuracy on the LFW face data set.

Fig. 1: Frequency response curve of camera sensors.

Face authentication. Using the face embedding technique, face
authentication can be performed as follows. The authentication
system firstly takes a photo of the user as its input, and then
identifies the largest face in the photo, crop it out and fit it to a
given size. The cropped image will then be centered according
to the positions of eyes and lip detected using face land mark
predictors. The centered image becomes an input to the face
embedding DNN and a vector can then be generated and stored
as a profile for the user.

Each time when a user is verified by the authentication
system, the system takes a photo of the user and goes through
the aforementioned steps to generate a vector. The similarity
between the vector and the profile is then calculated to find
out whether it exceeds a pre-defined threshold. The user passes
the authentication if it does. Otherwise, he fails.

Infrared. Infrared is the light that has a longer wavelength
than the visible light. It can be produced by LEDs. There are
two kinds of commonly seen IR LEDs available on the market,
the 850nm and the 940nm. The IR emitted by both of them
cannot be directly observed by humans.

On the other hand, IR can be captured by camera sensors.
These sensors are built upon three types of units: R, G and B,
which are sensitive to Red, Green and Blue lights respectively.
In the meantime, they can also detect other lights: e.g., Type
B unit produces positive output even when illuminated by
infrared, though most camera sensors do not have a specific
infrared unit. As a result, camera sensors can generate an image
very different from what people see, when the object in the
image is exposed to infrared.

Fig. 1 shows the sensitivity of three types of units versus
wavelengths (image acquired from Quora [16]). As we can see,
even for blue, which is the farthest away from the infrared range
(at the 850nm for our LEDs), there still remains a considerable
level of sensitivity. As a result, Type Blue unit can mistake
infrared for blue light. Similarly, Red unit takes it for red and
green unit mistakes it for green.

Adversarial examples. Adversaries intentionally design some
inputs to machine learning models, expecting the model’s
making mistakes. The inputs here are called adversarial
examples.



While such an input is usually generated by adding a
small perturbation to a legal input. The perturbation can be
calculated according to the model, the legal input, and the
target. Usually gradient optimizers solving equation (1) help
adversaries calculate the perturbation, where f(·) is the learning
model, x is a legal input, r is the perturbation, y is the target
output of the model and J(·, ·) is the loss function paired with
the model.

arg min
r

J(f(x+ r), y) (1)

Considering attacking a face authentication system with
adversarial examples, the attacker can construct such an
optimizer where f(·) is the face embedding model, x is a
photo of him, y is the embedding (feature vector) of the victim
that is generated with one of the victim’s photo. J(·, ·) here is
the loss function the model uses, which is usually a kind of
distance between feature vectors, weighting the similarity of a
pair of feature vectors. If only the optimizer figure out a loss
below the threshold defined for the authentication system, the
attacker can pass the authentication with the perturbation.

III. PROBLEM STATEMENT

We consider two attacking scenarios that are likely to
happen in our daily life. First, surveillance escaping that is
an application of dodging technique and then, authentication
cracking that utilizes impersonation.

A. Dodging

Thanks to the hi-tech devices being deployed around us,
our cities are becoming safer than ever before. Long time ago,
catching criminals was much more difficult and labor wasting.
By comparison, today, with thousands of surveillance cameras
distributed in cities, a criminal’s each step can be recorded.
Moreover, with abundant computational power, those targets of
police can be found in a blinking of eyes, by just searching the
criminals’ faces among the video streams from the surveillance
cameras.

However, a criminal may easily escape from such surveil-
lance, if he understands the mechanisms behind the surveillance
as well as some adversarial learning based dodging techniques
like the one proposed in this work. Specifically, supposing he
knows that the police men hunting for him use face recognition
tools rather than manually playback and examine every frame
of every video captured by surveillance cameras, he only needs
to use adversarial learning to fool the DNN models of the face
recognition system to escape surveillance. As a consequence,
in the video, he will not be recognized as himself, making the
automatic searching null and void.

At the same time, the criminal does not want himself to be
too distinctive, like warping his face with veil, otherwise people
around him would rouse suspicion and pay more attention to
him, at last, finding him a criminal.

Our proposed method aims at getting around the surveillance
by wearing a cap mounting some button size LEDs on the
peak, which is totally inconspicuous for nearby people.

B. Impersonation
The attacker may also want to impersonate a target victim,

expecting to crack face authentication systems, in a real time
and stealthily fashion.

Face authentication technique today is equipped on all kinds
of mobile devices and security devices, like smart phones and
laptops, door entrance or even boarder inspection, which are
oftentimes targets of adversaries.

The attack must be in real time because usually, an attacker
does not have much time to crack the authentication. For
instance, in a library, a student want to just unlock someone’s
laptop and copy some files during when the owner goes to
wash room, making attack methods that require fabricating
dedicated device for each attack less practical.

The attack must also be stealthy, otherwise similar with
dodging attacks, people around can notice the attack and
rouse suspicion. The stealthiness is more crucial because, for
scenarios where authentication is under manual supervision,
guardians having noticed the attack will arrest the attacker. For
example, at electronic boarder inspection channels that have
been deployed by a lot of countries, users passing the channel
that are supervised by officers.

C. Threat Model
In this work, unlike most previous works on adversarial

learning, we consider the attack that can be practically
implemented.

Target device integrity. We consider that the integrity of the
target devices has not been compromised during an attack:
that is, the attacker does not have access to the device used
for surveillance or authentication. Under this assumption, the
adversarial examples presented by previous attacks, which
require to change the input at pixel level precision, cannot be
practically constructed, because such modification cannot be
input to the device without compromising its integrity.

White box model. The knowledge about the FR model is
assumed to be publicly available, so the attacker can build
an exactly the same model as the target one. We assume this
because, in practice, application developers rarely train models
by themselves. Instead, they tend to directly embed well-known
models with pre-trained weights to the application or purchase
models and weights from a specialized deep learning company.
They do not train because 1) application developers typically
do not have a large labeled dataset; without a huge amount of
labeled data, the accuracy of the model cannot be guaranteed;
2) application developers usually do not have proper deep
learning backgrounds to train the model.

Attacker’s capability. For authentication, the attacker is
assumed to have already acquired at least one picture of his
target. This can be done by, say, downloading from victim’s
social network or stealthily taking a photo of him.

For dodging and impersonation, the attacker is assumed to
have a computer to launch the attack, a peak cap to mount the
attack device that includes some button size LEDs, a battery
and enough long wires.



Attacker’s Goal. For the dodging case, the attacker wants
himself not to be recognized. More specifically, there are two
ways to achieve this: one can fool the preprocessing network
model, making attackers’ face not detected; alternatively, she
can make a detected face not recognized as the attacker, in
which case the loss between the attacker’s feature vectors with
and without the dodging attempt should be larger than the
threshold for classifying two vectors to the same person, as
shown by the equation (2), where x is the photo of the attacker,
(x+ r) is the photo of the attacker with perturbation and th
is the aforementioned threshold.

J(f(x+ r), f(x)) > th (2)

In the impersonation attack, the attacker wants himself to be
identified as another (specific) individual, with a perturbation
calculated by adversarial learning algorithms. To this end, the
distance between an attacker launching the attack and his target
should not exceed the threshold, as shown by the equation (3),
where y is the photo of the victim.

J(f(x+ r), f(y)) < th (3)

IV. DODGING

In this section, we explain how the attacker dodges surveil-
lance cameras, by using the “invisible mask” – our device
issuing infrared for facial feature change.

A. How Face Searching Works

Before we explain how an attacker dodges surveillance, we
introduce how face searching works.
• Video to be searched should first be split into frames, so

that the searching can happen on images.
• Each image is firstly preprocessed to extract its face

portion only. In the preprocessing stage, images will be
sent to a land marking model that identifies a set of land
mark points for each face on the image, as shown by the
equation (4).

• For each set of land mark points, the face will be located
and cropped out according to the positions of the land
mark points, for later use.

• Each face will be input to a face embedding model that
converts it into a fixed length vector for future searching
(e.g., using the k-NN algorithm).

landmark predictor(·) ⊂ {∅, {points}n} (4)

B. Design

To dodge face searching, an attacker can either fail the land
marking model or avoid the embedding model. We found that,
with enough amount of infrared on face, the preprocessing
step will fail, i.e., causing the face landmarking model to
fail to output a set of valid land mark points, as shown in
the equation (5). Therefore we designed a device that can be
mounted on a peak cap that emits enough infrared to fail the
preprocessing step. So the attacker no longer needs to care
about being identified.

landmark predictor(x) = ∅ (5)

Fig. 2: A cap mounting our device.

C. Device

The dodging device consists of a peak cap, several LEDs
and a battery. The LEDs are mounted on the peak of the cap
and are facing the attacker’s face. Each of the LEDs is used to
interfere with the recognition of a zone of land marks. Fig. 2
shows a cap mounting our device.

Power. The device is powered by a 18650 battery, as shown
in Fig. 3. A single 18650 battery can support a LED for at
least two hours, as we tested.

Fig. 3: A 18650 battery powering the attack device.

Light source. Each light module in the device is equipped with
a 5W 850nm infrared LED as the light source (Fig. 4). 940nm
LEDs can also be used here, but giving a darker illumination
at the same given power consumption level.

Fig. 4: A LED as well as its lens.



Three LEDs are enough for causing the land mark collection
step to fail, as our experiment demonstrates. If the attacker
needs protection in brighter environments like outdoor, he may
use more powerful LEDs and also mount more LEDs to his
peak cap.

D. Invisibility

The device is overall inconspicuous, as illustrated by Fig. 5.
Only the lenses could be seen by people nearby, which however
are tiny and nearly transparent. The battery can be hidden inside
the cap and the wires, if needed, can be hidden underneath the
fabric of the peak. More importantly, the light emitted by the
LEDs is totally invisible to human eyes.

Fig. 5: The device we devised to launch attacks.

V. IMPERSONATION

In this section, we elaborate how the attacker finds an
adversarial example that misleads the embedding model to
recognize him as his victim target, by using only a pair of
images of them. More importantly, how to implement such an
adversarial example in real world.

A. Overview

Prior research that uses optimizers to find a perturbation does
not apply to this scenario, because the solutions cannot be easily
implemented using infrared LEDs. Specifically, an optimizer
without special treatment does not restrict the solutions it finds
to those that can possibly be realized using the combinations
of infrared light spots.

In our research, we first construct a model that describes the
infrared light spots on faces. Then, instead of optimizing the
loss with adding pixel perturbations, we optimize the loss by
adjusting light spots in line with our model on the attacker’s
photo. Each spot is produced by the model given a set layout
parameters as its inputs. The models here shape the perturbation
to ensure that it can be practically implemented using IR LEDs
on the attacker’s device, and the layout parameters determine
the position, strength and size of the perturbation IR spot.

As a result, after the optimizer reaches the optimum through
manipulating the parameters of all these models, the attacker
obtains an image that is likely to be recognized by the
embedding model as the victim, since the loss (that is, the
distance) between the synthesized image and the victim’s photo
is minimized. The synthesized image after optimization is not

only an adversarial example but also the one likely to be
implemented by the adversary using the infrared LEDs.

arg min
ri

J(f(x+
∑
i

m(ri), f(y)) (6)

Equation (6) loosely describes the optimizer we use, where
m(·) is the model for a light spot shown on the image, and
ri is the layout parameters for a the light spot. x+

∑
im(ri)

after optimization is the adversarial example.
Given an adversarial example, the attacker can adjust the

positions of LEDs on his attack device (Section IV) and use
the light spots generated by the device to approximate the
perturbation observed from the example, with the help our
calibration tool and several rounds of tuning.

Finally, the attack keeps the position of the devices and
manages to impersonate the victim.

B. Infrared Light Spot Modeling

As mentioned earlier, a infrared light generated by an IR
LED, though cannot be observed by human, produces a purple
light spot on face that can be captured by camera sensors.
We model such a light spot according to its position on face,
brightness, size, but not color and shape.

Shape. The shape of light spots varies, since the LED can
be set to different angles when lit on the face. Also, human
faces are not a flat plane, making light spots on faces hard to
describe. To simplify the optimization process, we use circles,
the closest shapes to the spots, to emulate the IR light’s effects
on faces.

Besides circle, when checking the brightness distribution
of the light spot on face, we found that it attenuates from
the center to its margin. We model this effect as a normally
distributed attenuating dot.

Color. The color is a little bit more difficult to decide. As
mentioned before, cameras can sense infrared. However, the
sensitivities of the three types of units toward infrared are
different. Blue unit is the most sensitive one, while green type
unit is the least sensitive one. As a result, camera will treat
infrared as light purple, which is a mixture of more blue light
and less green light.

To find out the accurate ratio between these three channels,
we took two photos of a person with and without infrared light
spot on his face respectively. Then we analyzed the difference
between the two pictures at the infrared illuminated zones. The
brightness values of the three types are of ratio 0.0852, 0.0533
and 0.1521 respectively. Therefore, when generating a light
spot, we keep the ratio of the brightness values of the three
channels for each pixel at 0.0852 : 0.0533 : 0.1521.

Size. The size of a light spot is modeled as the standard
deviation of normal distribution. The larger the standard
deviation is, the larger the spot becomes. The standard deviation
σ here is a parameter that the optimizer can adjust.

Position. The center coordinates of a light spot {px, py} are
also the input parameters of the optimizer.



Brightness. The brightness values of different spots on the
same face should be different, which is done by assigning an
amplification coefficient s to each spot.

In sum, the brightness of a pixel is the accumulation of the
effects from all spots, while for each spot, the effect is decided
by the amplification and the distance from the spot center to
the pixel, which can be calculated by inputting the distance to
the normal distribution probability density function (pdf), as
shown by equation (7). In this way, the center brightness of a
spot is exactly the amplification coefficient s and the spot size
goes opposite with the standard deviation σ.

b(x, y) = s ∗ norm pdfσ((px − x)2 + (py − y)2) (7)

C. Synthesized Image

As mentioned earlier, each light spot simulates the effect of
the light from an LED. To get a face image with effects of all
LEDs, we accumulate the effects of different LEDs together,
and apply the result to the original image (the attacker’s photo).

Isyn = Iatk + amp ∗ coloring(
∑
i

li) (8)

li =

bi(1, 1) ... bi(1, w)
...

. . .
...

bi(h, 1) ... bi(h,w)

 (9)

Equation (8) shows how the image is synthesized. li here is
the effect produced by one LED to the image by calculating
the brightness for each pixel, shown by the equation (9). The
function coloring(·) turns a gray scale image into a purple
one using the fixed ratio between RGB as we tested. amp here
amplifies the effects and will also be added to the optimization
variable list. To be noticed is that amp here sets the strength
of the perturbation, while s makes brightness of spots uneven.

D. Optimizer

We choose an Adam optimizer to find adversarial examples.
The objective function is the loss between the feature vector of
the synthesized image and that of the victim’s photo, as shown
by equation (10). The optimization variable lists include the
amp and four aforementioned parameters for each light spot,
i.e., σ, px, py, s for each spot.

arg min
amp,{σ,px,py,s}i

J(f(Isyn), f(Ivtm)) (10)

By running the optimizer with his photo Iatk and the victim’s
photo Ivtm, the attacker gets the minimum loss between them.
If only the loss is no larger than the threshold of recognition,
the Isyn becomes an adversarial example. More importantly,
the parameters yielding the minimum loss helps the attacker
implement the example.

E. Implementation

Acquiring the adversarial example is the first step towards a
success attack. The attacker also needs a device to implement

the adversarial example. A light spot has three types of
parameters that should all be adjustable with the device. For this
purpose, we enhanced the dodging device with a PWM circuit
and several variable angle lenses, for adjusting brightness and
sizes respectively. Following we describe how we enhanced
the device to support a given adversary example.

Positions. (px, py) describes the position of a light spot, which
can be adjusted by choosing different mounting positions and
angles for the LEDs. Once the attacker finds the correct position,
he can fix it with tape or glue.

Brightness. The brightness of a light spot is adjusted through
a newly introduced PWM circuit. It is because the input voltage
of LEDs cannot be decreased to dim the bulb, instead, the
brightness should be reduced through decreasing the time of
power supply. Specifically, a PWM circuit turns on and off the
LED at a very high frequency, say 10kHz. So, the brightness
can be controlled by the ratio between the time intervals (0.1ms)
in on state and off state (say 0.02ms and 0.08ms for a 0.1ms
interval). Fig. 6 shows a PWM circuit we use in our experiment.

Fig. 6: A PWM circuit to reduce the brightness of a LED.

Size. The size of a light spot can be adjusted through using
different kinds of lenses, each of which has a different angle
that results in different radius of the light spot. With the same
angle and distance between a LED and an attacker’s skin, a lens
with wider angle makes the spot larger with less brightness,
while a narrower yields a smaller but brighter one. Fig. 7 shows
the lenses we used in our experiment.

Fig. 7: Three different kinds of lenses that can be used to
adjust the size of the light spot.

F. Calibration

The attacker can use the interactive calibration tool we
developed to make the light spots closer to the worked out
adversarial example by instructing the attacker to tune the



position, strength and size of each light spot. The tool works
as follow:

1) The attacker roughly adjusts the LEDs’s position and
chooses suitable lenses according to the adversarial
example worked out by the optimizer for his target victim.

2) Then he sits in front of a computer and starts the tool
with the adversarial example as input. The tool asks
the attacker to turn off all the LEDs and takes a photo
(denoted as Ioff ) for the attacker.

3) The tool asks the attacker to turn on the LEDs and takes
a photo (Ion) for the attacker.

4) Both photos are firstly preprocessed using alignment
tool, after which only aligned faces left. The tool
then calculates the difference between the two photos.
i.e.Idiff = Ion − Ioff .

5) • The tool synthesizes each light spot according to
the parameters of the adversarial example. Then
it convolves each spot on Idiff around the its
theoretical center. Therefore the place where the
maximum convolution value appears is the de facto
center of light spot on Idiff , hence the center on
Ion. The tool compares the center on Ion and its
theoretical place to know the offset and prompts the
attacker the direction from the de facto center to the
theoretical center (the direction of the offset).

• The tool calculates the average brightness of each
light spot on Idiff and divides it by the average
brightness of Ion. The value is then compared with
the theoretical value to see if the spot is too bright
or too dim. The attacker will also know this.

• The tool searches around the light spot center to
know where the brightness is reduced to half of the
center. This value indicates the size of the spot. The
value is also compared with the theoretical one to
see if the light spot is too large or too small.

6) The attacker adjusts the positions, brightness and sizes
of the LEDs according to the information provided by
the tool. The tool shows the loss between Ion and Ivtm
in a real time manner. So, the attacker can calibrate until
he is satisfied.

7) The tool refreshes and goes to the 3rd step to repeat the
calibration process if it is not stopped by the attacker.

G. Fine Tuning

After having finished the calibration by the tool, the attacker
then fine tunes some spots to achieve a smaller loss by adjusting
the LEDs along the direction toward decreasing the loss, with
the real time loss feedback as reference, but without caring
the parameters provided by the calculated adversarial example.
This step can further improve success rate.

With this step, the deployed parameters of light spots actually
deviates from the calculated ones. However it may yield
a smaller loss, because the light spot model we used for
optimization is a simplified model, which is not perfectly
describing the actual spots. Therefore, the implementation
with those parameters may not be local optimum in real

case. Usually, the actual local optimum can be found by
continue minimizing the loss with attackers’ hands instead
of an optimizer.

VI. EVALUATION

In this section, we introduce how the attack was evaluated,
including some case studies of physical attacks and a large
scale study showing the risk of the attack.

TABLE I: Experiment environment used for the evaluation.

Face Embedding Model Face Net
Model Version 20170511-185253
Preprocessing CMU AlignDlib
Face Data Set LFW

A. Evaluation Environment

Table. I shows the models and data set we assume that our
targets use. To be noticed is that we assume no proprietary
model will be used. Instead, they use an embedding model
pre-trained by well known organizations. Table. II shows the
platform we used to launch attacks.

TABLE II: Experiment environment used for the evaluation.

CPU Intel Core i7 7700T
Memory 8G

OS Ubuntu 16.04 Virtual Machine
Framework Tensorflow 1.4

For the FaceNet embedding model, according to the paper
[22], squared L2 distance should be used to weight the distance
between two feature vectors generated by their model. And
they also gave thresholds for the LFW dataset, with which
they got an excellent 99.63% accuracy. We adopt the threshold
1.242 that was used in most cases by [22] over the LFW data
set. Therefore, when a pair of faces has distance below the
threshold, they will be recognized as from a same person,
otherwise two distinct individuals.

patk =
ηpLED
πr2

(11)

We didn’t recruit a large number of volunteers to participate
in our experiments, because we can not afford potential medical
risks resulted from IR. Specifically, we roughly calculated the
maximum radiation power of our LEDs on attackers’ faces
with the equation.(11), where pLED is the power of an IR
LED bulb, η is the efficiency of LEDs and r is the radius
of a spot light. The estimation result is around 2100 w/m2,
which is 50% more than the sun light (1413 w/m2 [1]). As
we all know that someone staring at the sun for a period of
time may suffer from sun burn, indicating that the IR LEDs
may have similar effects. Therefore, we only do several case
studies when implementing adversarial examples using our
device. Besides, during the experiments, the experimenter had
a 5 minutes cool down time between every 1 minute exposure
to IR.



B. Physical Dodging Attack

We experimented how the device can help an attacker dodge
surveillance. The experimenter was asked to wear the dodging
device in front of a camera. The camera captures a clip
of video of 5 seconds for the volunteer, during which the
volunteer rotates his head as much as possible. The video was
decomposed to frames and every frame was sent to the CMU’s
tool for preprocessing.

The results showed that no any single frame was recognized
by the tool as a face appearing, indicating a successful dodging
attack.

Yamada et al. proposed a similar dodging scheme with us
[28]. The difference lies in that their device directly illuminates
cameras, just like illuminating cameras using a flash light. The
principles behind the two methods are totally different. Theirs
are interfering the camera sensor while ours are fooling the
alignment model. More importantly, our device is controllable
so it can later be used to launch impersonation attack.

C. Physical Impersonation Attack

To test if the calculated adversarial examples can be
implemented in the real world, our experimenter implemented
some examples using our attack algorithm and device.

Procedure. For the impersonation attack, the volunteer played
the attacker’s role. And the experiment was conducted as
follow:
• We took a photo for the experimenter.
• The embedding of the photo was calculated. We also

prepared a database of embeddings for all the photos in
LFW dataset.

• The attacker’s embedding was searched over the database
to get a subset of potential victims who have a distance
that is not too high but above the threshold. The criterion
was set to be below 1.4 but above 1.242 (the threshold).

• We randomly selected four photos from the subset. They
are assumed to be photos from four victims. For each
of them, we ran the algorithm to search an adversarial
example.

• For each adversarial example, the volunteer used imper-
sonation device and the calibration tool to implement the
adversarial example. The time limit of tuning was set to
10 minutes.

During the experiment, we found the attacker need not
to make full use of all the 5 LEDs. The optimizer takes 5
light spots as input and assumes them all variable. While
when implementing an adversarial example, 3 LEDs were
already enough for pulling down the distance to below threshold.
Because, 1) the optimizer sometimes loses spots as some spots
either were moved out of the face zone during optimization,
or overlapped with each other. 2) 3 LEDs already produced
a satisfying result and too much LEDs makes calibration and
tuning difficult.

Experiment Result. Fig. 8 shows the result of the attack.
As we can see, originally, the original distances are all above
threshold, indicating an authentication system can recognize

that it is not the victim in the photo. While our algorithm gave
them all corresponding adversarial examples that theoretically
can make distances fall below threshold. More importantly,
the attacker can indeed implement those adversarial examples
by using our device and consequently fool an authentication
system.

Impact from Calibration. As the experimenter summarized,
the calibration played a really important role in approaching
adversarial examples. Before calibration, the LED layouts by
raw eye can hardly help him reduce the distance to below
threshold. While with about 5 minutes’ calibration, the distance
can be largely reduced. But there was a case where it is still
above threshold after calibration.

Free Tuning. To get an even lower distance value, the attacker
must tune the layout by his own. By emulating a “manual
optimizer”, thus, adjusting the LEDs along the direction of
pulling down the distance, an attacker can even get a lower
distance than the theoretical example.

D. Time Consumption and Complexity

The time consumption of calculating an adversarial example
mainly concentrates on the optimizer. In our experiment test
bed, it takes 0.5 second for each iteration of the Adam optimizer.
We restricted the number of iterations to 200. If the optimizer
gives a distance lower than the threshold, 200 more iterations
will be given to refine the adversarial example.

The complexity of each iteration is approximately equal to an
epoch of training the model, as the variables newly introduced
are only 21, which when comparing with the graph size of the
embedding model is negligible. Besides, the time consumed for
each iteration is also close to the time for a piece of embedding
calculation.

E. Large Scale Study

Besides having physically implemented attacks, we also mea-
sured how likely the attacker can calculate a valid adversarial
example when he has chosen a victim, through a large scale
study covering the whole LFW data set.

Procedure. In this study, we collected three photos from
volunteers as three attackers’ photos. Same as the prior part,
photos from the dataset were used as victims’s photos. For
each attacker, we split photos in the dataset into five groups
according to their distances from the attackers. Two groups
were not tested, as their distances are either too small ( less
than 1.242, model’s false positive) or too large ( more than
1.7). We believe the attacker should ask someone else with a
less distance from the victim to launch the attack if he finds
the distance between victim and him too large.

The left three groups were experimented. Their distance
ranges were (1.242, 1.4], (4.4, 1.55], (1.55,1.7] respectively.
For each photo inside each group, we ran our algorithm to
calculate an adversarial example for each attacker, and to see
if the example helped the attacker to pull down the distance
to below threshold.



Victim
Name Moby Hoi-chang Nan Vladimir

Victim
Photo

Adversarial
Example

Attacking
Photo

Original
Distance 1.36615 1.32877 1.33519 1.27185

Theoretical
Distance 1.19221 1.12402 0.98804 0.94705

Distance af-
ter Attack 1.07773 1.12691 1.08065 1.23451

Fig. 8: Physical impersonation attack result. Original distance means the distance between the embedding of the attacker and of
the victim before launching attack. Theoretical distance means the distance between the calculated adversarial example and the
victim. Distance after Attack means the distance between the victim and the attacker using our device after tuning.

Experiment Result. Table. III shows the ratio of adversarial
examples that made the distance below threshold and Fig. 9
shows the result of the large scale study in detail.

TABLE III: Success rate for different victim groups with
different original distances.

Original Group 1 Group 2 Group 3
Distance 1.242 - 1.4 1.4 - 1.55 1.55 - 1.7

Attacker 1 74.73% 48.07% 14.17%
Attacker 2 75.97% 46.82% 19.03%
Attacker 3 73.09% 46.76% 19.45%

As we can see from Fig. 9(a), for the group one who has
the least original distance, attackers have a very high chance to
work out a valid adversarial example. Comparing Fig. 9(a) and
Fig. 9(b), Fig. 9(c), we found the closer the original distance
is, the more possible an attacker can pull the distance down to
below threshold. Therefore, we imagine if there is a group of

attackers instead of one single attacker, the success rate can be
much higher, because it’s more likely for a group of people to
have at least one with close distance with their target victim.
And the attackers can always deliberately elect the one who
has similar skin color and other appearance features with the
victim to launch the attack, which help the attacks to get a
closer initial distance and thereby a closer result distance after
optimization, and ultimately, a higher success rate.

When comparing Fig. 9(d), Fig. 9(e) and Fig. 9(f), we
found the algorithm is not sensitive to attackers, as they have
very similar curves. The average distance drops are 0.2294,
0.2277 and 0.2302 for the three attackers respectively, as shown
by Fig. 10, and they measures attackers’ benefit with our
algorithm, also indicates the algorithm’s insensitive toward
attackers. According to the distance drop, we can see that
attackers can expect a successful attack if the original distance
is less than 1.45.
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Fig. 9: Large scale study result. Asterisk marked curves belong to the first attacker, cross marked curves belong to the second
attacker and diamond marked curves the third. The two figures in the left column belong to the first group, the middle the
second and the right the third. The figures in the first row show the PDF (probability density function) of the distances between
the adversarial examples and the victims. The vertical line shows the threshold. The figures in the second row show the distance
drops from using the attacker’s original photos to using the adversarial examples.
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Fig. 10: Attacker’s average distance gain with our algorithm
versus their original distances. The dashed line signals the gain
requirement for a successful attack.

VII. DISCUSSION

A. Limitations

Not enough success rate. As you may find from our
evaluation result, the possibility of working out a valid
adversarial example is not that high, comparing with the
previous works. This is mainly because the degree of freedom
attackers have in our work is much less than that in previous
works. Specifically, in our work, a lot of graphics that may result
in better adversarial examples are not in the searching range of
optimizers, because of the limited number of LEDs an attacker

can have and the fixed shape of light spots LEDs can produce.
By comparison, in a lot of previous works, every pixel of the
input, or a large chunk of pixels can be precisely manipulated by
attackers, indicating a large amount of manipulatable variables
or degree of freedom.

Nonetheless, we believe it is the limited amount of degree
of freedom that makes the error tolerance good, when imple-
menting adversarial examples.

Health concerns. It is unclear if an attacker would get his
eyes and face skins hurt, under the exposure of such a large
amount of infrared in a long period of time. If this is true after
confirmation from physicians, attackers may not dare to launch
attacks with this method, worrying about their health.

B. Future Work

Automatic calibration. It would be very good if the LEDs
could be mounted on kinetic sockets that can be controlled by
SoC (System on Chip), with which a mini program running on
the SoC could dynamically calibrate the LEDs for an attacker,
with the help of an embedding camera. All an attacker needs to
do would be uploading victim’s photo to the SoC, and the SoC
calculates adversarial examples, adjusts and calibrates LEDs
for the attacker.



Infrared projector. Instead of using LEDs, attackers could
devise a projector that can project any infrared graphical pattern.
This device would be similar to a projector but with infrared
LEDs as back light. In this case, the attacker need no longer
restrict the model to a combination of spots. It could be nearly
pixel level manipulatable images. With the help of this kind of
device, the searching space would be largely extended, bring
in a huge more amount of degree of freedom.

Defense. Filtering out infrared at lens is not a feasible defense,
though it is done by a lot of high end DSLRs. Specifically,
surveillance cameras need IR for imaging at night. While for
authentication, filtering IR for ordinary lens is to expensive. We
tested the IR sensitivity of the cameras on all the notebooks and
mobile phones around us, including the front camera of iPhone
6s, MacBook Pro built-in camera and several top shipment
devices. The results indicate that all of them are sensitive to
IR.

Defenses against infrared are easy to implement, with
adversarial training like method. Our calibration tool can
already detect infrared spots on images. Therefore, images
can be filtered before being sent to embedding models. And
an image should be paid more attention if such infrared spots
are found.

Recently, a lot of works aiming at defending adversarial
learning attacks were proposed, but nearly all were turned to
be useless [2] with a recent more advanced circumventing
method. Defending against adversarial examples is still a open
problem.

Black box extension. Our work bases on a white box
embedding model. However, recent work [23] showed that
adversarial learning methods based on white box model can
be migrated to black box model immediately, with the help
of (PSO) Particle Swarm Optimization [5], where the model
structure is not required for optimization.

In fact, in our work, the embedding model was only used
by attackers to calculate embeddings and by the optimizer to
backwardly calculate gradients to optimize the loss. Distance
calculations do not need the inside structure and weights of
the model. Therefore white box assumptions are not used here.
Attackers only need to query the black box to get the distance
between a pair of images (synthesized and victim’s), when
there is black box only. For the gradient calculation, it is a little
bit more complex. Intuitively, without knowing the expression
of a function, approximate gradient values at given points
can still be worked out, as shown by equation (12). Similarly,
without the structure and weights of a model, the gradient of
the model with respect to a layout variable can be worked out,
though querying twice the black box learning model, i.e., the
embedding of a current synthesized image and the embedding
of a synthesized image with a little bit deviated layout variable.

∂f(x, y)

∂x

∣∣∣∣
x=x0,y=y0

=
f(x0 + ∆x, y0)− f(x0, y0)

∆x
(12)

A recent work proposed a method to attack black box DNN

[17], during which they devised a local-search based technique
to get a numeric approximation of a network gradient. Besides,
there are other works [9], [11] can be implanted to help us to
accommodate a black box model.

Admittedly, the approximated gradient has errors, comparing
with the one worked out by back propagation. So it’s unknown
how much accuracy degradation will be introduced.

VIII. RELATED WORKS

A. Practical Attacks to ML

Sharif et al. proposed an accessory-based attack [23].
They fool face recognition systems by special eyeglasses-
frames. They designed a recursive algorithm to find printable
adversarial examples, and launched attacks with adversarial
example printed on eyeglasses. In their work, adversaries can
wear the eyeglasses to dodge face recognition systems or
impersonate a target victim. However, these special eyeglasses
are so conspicuous, rousing suspicion from people around
her/him. Besides, attackers need to fabricate device for each
target. In contrast, wearing our device is inconspicuous and
attackers could reuse the device for different targets.

Evtimov et al. [6] proposed a method to attack unmanned
cars through adding perturbations to road signs. They pasted
self made stickers on real road signs and successfully fooled
recognition systems embedded in cars. Following their method,
one can also paste stickers on face to fool the face recognition
algorithm. However, unless if it is in Halloween nights, doing so
would be so conspicuous. Therefore, we believe our approach
is a more practical one.

Another kind of attack targeting face recognition is to merge
a victim’s facial characteristics into adversary’s photos and
present the synthesized photos in front of face authentication
systems [13]. However this kind of attack can hardly be stealthy,
because it is a screen instead of a person in front of the
authentication camera.

Zhang et al. proposed to use high frequency audio channel
to inject command to fool voice assistant inside mobile phones
or smart home devices [29], which is also related to our work.

B. Adversarial Learning

Our approach relies on finding adversarial examples. Szegedy
et al. [26] firstly defined adversarial examples and gave an
insight of attacking visual recognition systems with adversarial
examples. After that, plenty of works were proposed to improve
the efficiency and robustness of the searching algorithm.

When searching adversarial perturbations, researchers mainly
use three distance metrics, L0, L2, L∞. Minimizing different
metrics results in different perturbations. Minimizing L0, one
gets perturbations with minimum number of pixels differing
from those on the original input. The Jacobian-based Saliency
Map (JSMA) [20] is such an attack optimizing L0. By
minimizing L2, attackers obtain perturbations that have the
minimum norm, in terms of Euclidean distance, across all pixels.
Using this metric, Nguyen et al. [18] proposed an interesting
attack that adds perturbations on a blank image to fool
recognition systems. Minimizing L∞, one finds perturbations



with the smallest maximum-change to pixels. Under this metric,
the algorithm manages to find a region of pixels with similar
intensities to modify. An example of this kind of attack is Fast
Gradient Sign Method (FGSM) [8], which iteratively updates
perturbations by stepping away a small stride along with the
direction of the gradient.

More recently, Carlini et al. [4] proposed an approach that
significantly improved the efficiency of the searching algorithm.
It demonstrated that using their approach can fool a number
of defense techniques [3]. Besides, researchers [10], [12],
[15] found the existence of transferability for perturbations,
indicating that the perturbation generated for one system may
be used to fool another system. Liu et al. [14] proposed an
ensemble method to construct such transferable perturbations
among different neural networks. Papernot et al. [19] demon-
strated that transferability also exists between different machine
learning techniques, such as Logistic Regression (LR), Support
Vector Machine (SVM) and Nearest Neighbors (kNN).

C. Security and Privacy of ML

The security of Machine learning is attracting more and
more attentions, Papernot et al. summarized recent findings
in machine learning security and concluded an opposing
relationship between the accuracy and security for machine
learning algorithms [21].

IX. CONCLUSION

In this paper, we discovered that infrared can be used by
attackers to either dodge or impersonate someone against
machine learning systems. To prove the severeness, we de-
veloped an algorithm to search adversarial examples. Besides,
we designed an inconspicuous device to implement those
adversarial examples in the real world. As show cases, some
photos were selected from the LFW data set as hypothetical
victims. We successfully worked out adversarial examples and
implemented those examples for those victims. What’s more,
we conducted a large scale study among the LFW data set,
which showed that for a single attacker, over 70% of the people
could be successfully attacked, if they have some similarity.

Based on our findings and attacks, we conclude that
face recognition techniques today are still far from secure
and reliable when being applied to critical scenarios like
authentication and surveillance. Researchers should pay more
attention to the threaten from infrared.
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