
1

i

About the Tutorial

LISP is the second-oldest high-level programming language after Fortran and has

changed a great deal since its early days, and a number of dialects have existed over

its history. Today, the most widely known general-purpose LISP dialects are Common

LISP and Scheme.

This tutorial takes you through features of LISP Programming language by simple and

practical approach of learning.

Audience

This reference has been prepared for the beginners to help them understand the basic

to advanced concepts related to LISP Programming language.

Prerequisites

Before you start doing practice with various types of examples given in this reference,

we assume that you are already aware of the fundamentals of computer programming

and programming languages.

Copyright & Disclaimer

 Copyright 2014 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutotorials

Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute

or republish any contents or a part of contents of this e-book in any manner without

written consent of the publisher.

You strive to update the contents of our website and tutorials as timely and as precisely

as possible, however, the contents may contain inaccuracies or errors. Tutorials Point

(I) Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness

of our website or its contents including this tutorial. If you discover any errors on our

website or in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

LISP

 ii

Table of Contents

About the Tutorial ... i

Audience ... i

Prerequisites ... i

Copyright & Disclaimer .. i

Table of Contents ... ii

1. OVERVIEW ... 1

Features of Common LISP ... 1

Applications Developed in LISP .. 1

2. ENVIRONMENT SETUP ... 3

How to Use CLISP ... 3

3. PROGRAM STRUCTURE ... 4

A Simple LISP Program ... 4

LISP Uses Prefix Notation ... 5

Evaluation of LISP Programs ... 5

The 'Hello World' Program ... 6

4. BASIC SYNTAX .. 7

Basic Elements in LISP .. 7

Adding Comments .. 8

Notable Points ... 8

LISP Forms .. 8

Naming Conventions in LISP ... 9

Use of Single Quotation Mark .. 9

5. DATA TYPES ... 11

Type Specifiers in LISP .. 11

6. MACROS ... 14

LISP

 iii

Defining a Macro .. 14

7. VARIABLES ... 15

Global Variables ... 15

Local Variables ... 16

8. CONSTANTS .. 18

9. OPERATORS ... 19

Arithmetic Operations .. 19

Comparison Operations ... 20

Logical Operations on Boolean Values.. 22

Bitwise Operations on Numbers ... 24

10. DECISION MAKING ... 27

The cond Construct in LISP ... 28

The if Construct .. 29

The when Construct ... 30

The case Construct ... 31

11. LOOPS ... 32

The loop Construct ... 33

The loop for Construct .. 33

The do Construct .. 35

The dotimes Construct ... 36

The dolist Construct ... 37

Exiting Gracefully from a Block ... 38

12. FUNCTIONS ... 40

Defining Functions in LISP .. 40

Optional Parameters .. 41

Rest Parameters ... 42

LISP

 iv

Keyword Parameters .. 43

Returning Values from a Function .. 43

Lambda Functions .. 45

Mapping Functions ... 45

13. PREDICATES ... 47

14. NUMBERS .. 51

Various Numeric Types in LISP ... 52

Number Functions .. 53

15. CHARACTERS ... 56

Special Characters .. 56

Character Comparison Functions .. 57

16. ARRAYS .. 59

17. STRINGS ... 66

String Comparison Functions .. 66

Case Controlling Functions ... 68

Trimming Strings .. 69

Other String Functions ... 70

18. SEQUENCES ... 73

Creating a Sequence ... 73

Generic Functions on Sequences .. 73

Standard Sequence Function Keyword Arguments ... 76

Finding Length and Element ... 76

Modifying Sequences ... 77

Sorting and Merging Sequences ... 78

Sequence Predicates .. 79

Mapping Sequences ... 80

LISP

 v

19. LISTS ... 81

The Cons Record Structure ... 81

Creating Lists with list Function in LISP ... 82

List Manipulating Functions ... 83

Concatenation of car and cdr Functions ... 85

20. SYMBOLS ... 86

Property Lists ... 86

21. VECTORS .. 89

Creating Vectors ... 89

Fill Pointer Argument ... 90

22. SET ... 92

Implementing Sets in LISP .. 92

Checking Membership .. 93

Set Union ... 94

Set Intersection .. 95

Set Difference .. 96

23. TREE .. 98

Tree as List of Lists ... 98

Tree Functions in LISP... 98

Building Your Own Tree ..100

Adding a Child Node into a Tree ..100

24. HASH TABLE ...103

Creating Hash Table in LISP ...103

Retrieving Items from Hash Table ...104

Adding Items into Hash Table ..104

Removing an Entry from Hash Table ...105

LISP

 vi

Applying a Specified Function on Hash Table ..106

25. INPUT & OUTPUT ...107

Input Functions ...107

Reading Input from Keyboard ...108

Output Functions ..110

Formatted Output ...113

26. FILE I/O ..115

Opening Files...115

Writing to and Reading from Files ...116

Closing a File ...118

27. STRUCTURES ..119

Defining a Structure ..119

28. PACKAGES ...122

Package Functions in LISP ..122

Creating a Package ..123

Using a Package...123

Deleting a Package ..125

29. ERROR HANDLING ...127

Signaling a Condition ...127

Handling a Condition ...127

Restarting or Continuing the Program Execution ...128

Error Signaling Functions in LISP ..131

30. COMMON LISP OBJECT SYSTEMS ..133

Defining Classes ..133

Providing Access and Read/Write Control to a Slot ...133

Creating Instance of a Class ...134

LISP

 vii

Defining a Class Method ..135

Inheritance ..136

1

LISP stands for LISt Programming. John McCarthy invented LISP in 1958, shortly after

the development of FORTRAN. It was first implemented by Steve Russell on an IBM

704 computer. It is particularly suitable for Artificial Intelligence programs, as it

processes symbolic information efficiently.

Common LISP originated during the decade of 1980 to 1990, in an attempt to unify

the work of several implementation groups, as a successor of Maclisp like ZetaLisp and

New Implementation of LISP (NIL) etc.

It serves as a common language, which can be easily extended for specific

implementation. Programs written in Common LISP do not depend on machine-specific

characteristics, such as word length etc.

Features of Common LISP

 It is machine-independent

 It uses iterative design methodology

 It has easy extensibility

 It allows to update the programs dynamically

 It provides high level debugging.

 It provides advanced object-oriented programming.

 It provides convenient macro system.

 It provides wide-ranging data types like, objects, structures, lists, vectors,

adjustable arrays, hash-tables, and symbols.

 It is expression-based.

 It provides an object-oriented condition system.

 It provides complete I/O library.

 It provides extensive control structures.

Applications Developed in LISP

The following applications are developed in LISP: Large successful applications built in

LISP.

1. OVERVIEW

LISP

 2

 Emacs: It is a cross platform editor with the features of extensibility,

customizability, self-document ability, and real-time display.

 G2

 AutoCad

 Igor Engraver

 Yahoo Store

LISP

 3

CLISP is the GNU Common LISP multi-architechtural compiler used for setting up LISP

in Windows. The Windows version emulates Unix environment using MingW under

Windows. The installer takes care of this and automatically adds CLISP to the Windows

PATH variable.

You can get the latest CLISP for Windows at:

http://sourceforge.net/projects/clisp/files/latest/download

 It creates a shortcut in the Start Menu by default, for the line-by-line interpreter.

How to Use CLISP

During installation, CLISP is automatically added to your PATH variable if you select

the option (RECOMMENDED). It means that you can simply open a new Command

window and type "clisp" to bring up the compiler.

To run a *.lisp or *.lsp file, simply use:

clisp hello.lisp

2. ENVIRONMENT SETUP

LISP

 4

LISP expressions are called symbolic expressions or S-expressions. The S-expressions

are composed of three valid objects:

 Atoms

 Lists

 Strings

Any S-expression is a valid program. LISP programs run either on an interpreter or

as compiled code.

The interpreter checks the source code in a repeated loop, which is also called the

Read-Evaluate-Print Loop (REPL). It reads the program code, evaluates it, and prints

the values returned by the program.

A Simple LISP Program

Let us write an s-expression to find the sum of three numbers 7, 9 and 11. To do this,

we can type at the interpreter prompt ->:

(+7911)

LISP returns the following result:

27

If you would like to execute the same program as a compiled code, then create a LISP

source code file named myprog.lisp and type the following code in it:

(write(+7911))

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and

the result is:

27

3. PROGRAM STRUCTURE

LISP

 5

LISP Uses Prefix Notation

In prefix notation, operators are written before their operands. You might have noted

that LISP uses prefix notation. In the above program, the ‘+’ symbol works as a

function name for the process of summation of the numbers.

For example, the following expression,

a * (b + c) / d

is written in LISP as:

(/ (* a (+ b c)) d)

Let us take another example. Let us write code for converting Fahrenheit temperature

of 60o F to the centigrade scale:

The mathematical expression for this conversion is:

(60 * 9 / 5) + 32

Create a source code file named main.lisp and type the following code in it:

(write(+ (* (/ 9 5) 60) 32))

When you click the Execute button, or type Ctrl+E, MATLAB executes it immediately

and the result is:

140

Evaluation of LISP Programs

The LISP program has two parts:

 Translation of program text into LISP objects by a reader program.

 Implementation of the semantics of the language in terms of LSIP objects by an

evaluator program.

The evaluation program takes the following steps:

 The reader translates the strings of characters to LISP objects or s-

expressions.

 The evaluator defines syntax of LISP forms that are built from s-expressions.

LISP

 6

 This second level of evaluation defines a syntax that determines which s-

expressions are LISP forms.

 The evaluator works as a function that takes a valid LISP form as an argument

and returns a value. This is the reason why we put the LISP expression in

parenthesis, because we are sending the entire expression/form to the evaluator

as argument.

The 'Hello World' Program

Learning a new programming language does not really take off until you learn how to

greet the entire world in that language, right ?

Let us create new source code file named main.lisp and type the following code in it:

(write-line "Hello World")

(write-line "I am at 'Tutorials Point'! Learning LISP")

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and

the result is:

Hello World

I am at 'Tutorials Point'! Learning LISP

LISP

 7

This chapter introduces you to basic syntax structure in LISP.

Basic Elements in LISP

LISP programs are made up of three basic elements:

 atom

 list

 string

An atom is a number or string of contiguous characters. It includes numbers and

special characters. The following examples show some valid atoms:

hello-from-tutorials-point

name

123008907

hello

Block#221

abc123

A list is a sequence of atoms and/or other lists enclosed in parentheses. The following

examples show some valid lists:

(i am a list)

(a (a b c) d e fgh)

(father tom (susan bill joe))

(sun mon tue wed thur fri sat)

()

A string is a group of characters enclosed in double quotation marks. The following

examples show some valid strings:

" I am a string"

"a ba c d efg #$%^&!"

"Please enter the following details:"

4. BASIC SYNTAX

LISP

 8

"Hello from 'Tutorials Point'! "

Adding Comments

The semicolon symbol (;) is used for indicating a comment line.

Example

(write-line "Hello World") ; greet the world

; tell them your whereabouts

(write-line "I am at 'Tutorials Point'! Learning LISP")

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and

the result returned is:

Hello World

I am at 'Tutorials Point'! Learning LISP

Notable Points

The following important points are notable:

 The basic numeric operations in LISP are +, -, *, and /

 LISP represents a function call f(x) as (f x), for example cos(45) is written as

cos 45

 LISP expressions are not case-sensitive. Means, cos 45 or COS 45 are same.

 LISP tries to evaluate everything, including the arguments of a function. Only

three types of elements are constants and always return their own value:

o Numbers

o The letter t, that stands for logical true

o The value nil, that stands for logical false, as well as an empty list.

LISP Forms

In the previous chapter, we mentioned that the evaluation process of LISP code takes

the following steps:

 The reader translates the strings of characters to LISP objects or s-

expressions.

LISP

 9

 The evaluator defines syntax of LISP forms that are built from s-expressions.

This second level of evaluation defines a syntax that determines which s-

expressions are LISP forms.

A LISP form can be:

 An atom

 An empty list or non-list

 Any list that has a symbol as its first element

The evaluator works as a function that takes a valid LISP form as an argument and

returns a value. This is the reason why we put the LISP expression in

parenthesis, because we are sending the entire expression/form to the evaluator as

argument.

Naming Conventions in LISP

Name or symbols can consist of any number of alphanumeric characters other than

whitespace, open and closing parentheses, double and single quotes, backslash,

comma, colon, semicolon and vertical bar. To use these characters in a name, you

need to use escape character (\).

A name can have digits but must not be made of only digits, because then it would be

read as a number. Similarly a name can have periods, but cannot be entirely made of

periods.

Use of Single Quotation Mark

LISP evaluates everything including the function arguments and list members.

At times, we need to take atoms or lists literally and do not want them evaluated or

treated as function calls. To do this, we need to precede the atom or the list with a

single quotation mark.

The following example demonstrates this:

Create a file named main.lisp and type the following code into it:

(write-line "single quote used, it inhibits evaluation")

(write '(* 2 3))

(write-line " ")

(write-line "single quote not used, so expression evaluated")

(write (* 2 3))

LISP

 10

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and

the result is:

single quote used, it inhibits evaluation

(* 2 3)

single quote not used, so expression evaluated

6

LISP

 11

LISP data types can be categorized as:

Scalar types - numbers, characters, symbols etc.

Data structures - lists, vectors, bit-vectors, and strings.

Any variable can take any LISP object as its value, unless you declare it explicitly.

Although, it is not necessary to specify a data type for a LISP variable, however, it

helps in certain loop expansions, in method declarations and some other situations that

we will discuss in later chapters.

The data types are arranged into a hierarchy. A data type is a set of LISP objects and

many objects may belong to one such set.

The typep predicate is used for finding whether an object belongs to a specific type.

The type-of function returns the data type of a given object.

Type Specifiers in LISP

Type specifiers are system-defined symbols for data types.

Array fixnum package simple-string

Atom float pathname simple-vector

Bignum function random-state single-float

Bit hash-table Ratio standard-char

bit-vector integer Rational stream

Character keyword readtable string

[common] list sequence [string-char]

compiled-function long-float short-float symbol

Complex nill signed-byte t

5. DATA TYPES

LISP

 12

Cons null simple-array unsigned-byte

double-float number simple-bit-vector vector

Apart from these system-defined types, you can create your own data types. When a

structure type is defined using defstruct function, the name of the structure type

becomes a valid type symbol.>/p>

Example 1

Create new source code file named main.lisp and type the following code in it:

(setq x 10)

(setq y 34.567)

(setq ch nil)

(setq n 123.78)

(setq bg 11.0e+4)

(setq r 124/2)

(print x)

(print y)

(print n)

(print ch)

(print bg)

(print r)

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and

the result returned is:

10

34.567

123.78

NIL

110000.0

62

LISP

 13

Example 2

Next let us check the types of the variables used in the previous example. Create new

source code file named main.lisp and type the following code in it:

(setq x 10)

(setq y 34.567)

(setq ch nil)

(setq n 123.78)

(setq bg 11.0e+4)

(setq r 124/2)

(print (type-of x))

(print (type-of y))

(print (type-of n))

(print (type-of ch))

(print (type-of bg))

(print (type-of r))

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and

the resultis:

(INTEGER 0 281474976710655)

SINGLE-FLOAT

SINGLE-FLOAT

NULL

SINGLE-FLOAT

(INTEGER 0 281474976710655)

LISP

 14

This chapter introduces you about macros in LISP.

A macro is a function that takes an s-expression as arguments and returns a LISP

form, which is then evaluated. Macros allow you to extend the syntax of standard LISP.

Defining a Macro

In LISP, a named macro is defined using another macro named defmacro. Syntax for

defining a macro is:

(defmacro macro-name (parameter-list)

 "Optional documentation string."

 body-form)

The macro definition consists of the name of the macro, a parameter list, an optional

documentation string, and a body of LISP expressions that defines the job to be

performed by the macro.

Example

Let us write a simple macro named setTo10, which takes a number and sets its value

to 10.

Create new source code file named main.lisp and type the following code in it:

defmacro setTo10(num)

 (setq num 10)(print num))

 (setq x 25)

 (print x)

 (setTo10 x)

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and

the result is:

25

10

6. MACROS

LISP

 15

In LISP, each variable is represented by a symbol. The name of the variable is the

name of the symbol and it is stored in the storage cell of the symbol.

Global Variables

Global variables are generally declared using the defvar construct. Global variables

have permanent values throughout the LISP system and remain in effect until new

values are specified.

Example

(defvar x 234)

(write x)

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and

the result is:

234

As there is no type declaration for variables in LISP, you need to specify a value for a

symbol directly with the setq construct.

Example

->(setq x 10)

The above expression assigns the value 10 to the variable x. You can refer to the

variable using the symbol itself as an expression.

The symbol-value function allows you to extract the value stored at the symbol

storage place.

Example

Create new source code file named main.lisp and type the following code in it:

(setq x 10)

(setq y 20)

(format t "x = ~2d y = ~2d ~%" x y)

(setq x 100)

(setq y 200)

7. VARIABLES

LISP

 16

(format t "x = ~2d y = ~2d" x y)

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and

the result is:

x = 10 y = 20

x = 100 y = 200

Local Variables

Local variables are defined within a given procedure. The parameters named as

arguments within a function definition are also local variables. Local variables are

accessible only within the respective function.

Like the global variables, local variables can also be created using the setq construct.

There are two other constructs - let and prog for creating local variables.

The let construct has the following syntax:

(let ((var1 val1) (var2 val2).. (varn valn))<s-expressions>)

Where var1, var2,…,varn are variable names and val1, val2,…, valn are the initial

values assigned to the respective variables.

When let is executed, each variable is assigned the respective value and at last, the s-

expression is evaluated. The value of the last expression evaluated is returned.

If you do not include an initial value for a variable, the variable is assigned to nil.

Example

Create new source code file named main.lisp and type the following code in it:

(let ((x 'a)

 (y 'b)

 (z 'c))

(format t "x = ~a y = ~a z = ~a" x y z))

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and

the result is:

x = A y = B z = C

The prog construct also has the list of local variables as its first argument, which is

followed by the body of the prog, and any number of s-expressions.

LISP

 17

The prog function executes the list of s-expressions in sequence and returns nil unless

it encounters a function call named return. Then the argument of the return function

is evaluated and returned.

Example

Create new source code file named main.lisp and type the following code in it:

(prog ((x '(a b c))

 (y '(1 2 3))

 (z '(p q 10)))

(format t "x = ~a y = ~a z = ~a" x y z))

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and

the result is:

x = (A B C) y = (1 2 3) z = (P Q 10)

LISP

 18

In LISP, constants are variables that never change their values during program

execution. Constants are declared using the defconstant construct.

Example

The following example shows declaring a global constant PI and later using this value

inside a function named area-circle that calculates the area of a circle. The defun

construct is used for defining a function, we will look into it in the 'Functions' chapter.

Create a new source code file named main.lisp and type the following code in it:

(defconstant PI 3.141592)

(defun area-circle(rad)

 (terpri)

 (format t "Radius: ~5f" rad)

 (format t "~%Area: ~10f" (* PI rad rad)))

 (area-circle 10)

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and

the result is:

Radius: 10.0

Area: 314.1592

8. CONSTANTS

LISP

 19

An operator is a symbol that tells the compiler to perform specific mathematical or

logical manipulations. LISP allows numerous operations on data, supported by various

functions, macros and other constructs.

The operations allowed on data could be categorized as:

 Arithmetic Operations

 Comparison Operations

 Logical Operations

 Bitwise Operations

Arithmetic Operations

The following table shows all the arithmetic operators supported by LISP. Assume

variable A = 10 and variable B = 20 then:

Operator Description Example

+ Adds two operands (+ A B) gives 30

- Subtracts second operand from the first (- A B) gives-10

* Multiplies both operands (* A B) gives 200

/ Divides numerator by de-numerator (/ B A) gives 2

mod,rem
Modulus Operator and remainder of after

an integer division
(mod B A)gives 0

incf
Increments operator increases integer

value by the second argument specified
(incf A 3) gives 13

decf
Decrements operator decreases integer

value by the second argument specified
(decf A 4) gives 9

9. OPERATORS

LISP

 20

Example

Create a new source code file named main.lisp and type the following code in it:

(setq a 10)

(setq b 20)

(format t "~% A + B = ~d" (+ a b))

(format t "~% A - B = ~d" (- a b))

(format t "~% A x B = ~d" (* a b))

(format t "~% B / A = ~d" (/ b a))

(format t "~% Increment A by 3 = ~d" (incf a 3))

(format t "~% Decrement A by 4 = ~d" (decf a 4))

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and

the result is:

A + B = 30

A - B = -10

A x B = 200

B / A = 2

Increment A by 3 = 13

Decrement A by 4 = 9

Comparison Operations

Following table shows all the relational operators supported by LISP that compares

between numbers. However unlike relational operators in other languages, LISP

comparison operators may take more than two operands and they work on numbers

only.

Assume variable A = 10 and variable B = 20, then:

Operator Description Example

=
Checks if the values of the operands are all equal

or not, if yes then condition becomes true.
(= A B) is not true.

/=

Checks if the values of the operands are all

different or not, if values are not equal then

condition becomes true.

(/= A B) is true.

LISP

 21

>
Checks if the values of the operands are

monotonically decreasing.
(> A B) is not true.

<
Checks if the values of the operands are

monotonically increasing.
(< A B) is true.

>=

Checks if the value of any left operand is greater

than or equal to the value of next right operand,

if yes then condition becomes true.

(>= A B) is not

true.

<=

Checks if the value of any left operand is less

than or equal to the value of its right operand, if

yes then condition becomes true.

(<= A B) is true.

max
It compares two or more arguments and returns

the maximum value.

(max A B) returns

20

min
It compares two or more arguments and returns

the minimum value.

(min A B) returns

20

Example

Create a new source code file named main.lisp and type the following code in it:

(setq a 10)

(setq b 20)

(format t "~% A = B is ~a" (= a b))

(format t "~% A /= B is ~a" (/= a b))

(format t "~% A > B is ~a" (> a b))

(format t "~% A < B is ~a" (< a b))

(format t "~% A >= B is ~a" (>= a b))

(format t "~% A <= B is ~a" (<= a b))

(format t "~% Max of A and B is ~d" (max a b))

(format t "~% Min of A and B is ~d" (min a b))

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and

the result is:

A = B is NIL

A /= B is T

LISP

 22

A > B is NIL

A < B is T

A >= B is NIL

A <= B is T

Max of A and B is 20

Min of A and B is 10

Logical Operations on Boolean Values

Common LISP provides three logical operators: and, or, and not that operate on

boolean values. Assume A = nil and B = 5, then:

Operator Description Example

and

It takes any number of arguments. The

arguments are evaluated left to right. If all

arguments evaluate to non-nil, then the value of

the last argument is returned. Otherwise nil is

returned.

(and A B) returns

NIL.

or

It takes any number of arguments. The

arguments are evaluated left to right until one

evaluates to non-nil, in such case the argument

value is returned, otherwise it returns nil.

(or A B) returns 5.

not
It takes one argument and returns t if the

argument evaluates to nil.
(not A) returns T.

Example

Create a new source code file named main.lisp and type the following code in it:

(setq a 10)

(setq b 20)

(format t "~% A and B is ~a" (and a b))

(format t "~% A or B is ~a" (or a b))

(format t "~% not A is ~a" (not a))

(terpri)

(setq a nil)

LISP

 23

(setq b 5)

(format t "~% A and B is ~a" (and a b))

(format t "~% A or B is ~a" (or a b))

(format t "~% not A is ~a" (not a))

(terpri)

(setq a nil)

(setq b 0)

(format t "~% A and B is ~a" (and a b))

(format t "~% A or B is ~a" (or a b))

(format t "~% not A is ~a" (not a))

(terpri)

(setq a 10)

(setq b 0)

(setq c 30)

(setq d 40)

(format t "~% Result of and operation on 10, 0, 30, 40 is ~a" (and a b c d))

(format t "~% Result of and operation on 10, 0, 30, 40 is ~a" (or a b c d))

(terpri)

(setq a 10)

(setq b 20)

(setq c nil)

(setq d 40)

(format t "~% Result of and operation on 10, 20, nil, 40 is ~a" (and a b c d))

(format t "~% Result of and operation on 10, 20, nil, 40 is ~a" (or a b c d))

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and

the result is:

A and B is 20

A or B is 10

not A is NIL

A and B is NIL

A or B is 5

not A is T

LISP

 24

A and B is NIL

A or B is 0

not A is T

Result of and operation on 10, 0, 30, 40 is 40

Result of and operation on 10, 0, 30, 40 is 10

Result of and operation on 10, 20, nil, 40 is NIL

Result of and operation on 10, 20, nil, 40 is 10

Please note that the logical operations work on Boolean values and secondly, numeric

zero and NIL are not same.

Bitwise Operations on Numbers

Bitwise operators work on bits and perform bit-by-bit operation. The truth tables for

bitwise AND, OR, and XOR operations are as follows:

p q p and q p or q p xor q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

Assume if A = 60; and B = 13; now in binary format they are represented as:

A = 0011 1100

B = 0000 1101

A and B = 0000 1100

A or B = 0011 1101

A xor B = 0011 0001

not A = 1100 0011

LISP

 25

The Bitwise operators supported by LISP are listed in the following table. Assume

variable A = 60 and variable B = 13, then:

Operator Description Example

logand

This returns the bit-wise logical AND of its

arguments. If no argument is given, then the

result is -1, which is an identity for this

operation.

(logand a b)) gives 12

logior

This returns the bit-wise logical INCLUSIVE OR

of its arguments. If no argument is given, then

the result is zero, which is an identity for this

operation.

(logior a b) gives 61

logxor

This returns the bit-wise logical EXCLUSIVE OR

of its arguments. If no argument is given, then

the result is zero, which is an identity for this

operation.

(logxor a b) gives 49

lognor

This returns the bit-wise NOT of its arguments.

If no argument is given, then the result is -1,

which is an identity for this operation.

(lognor a b) gives -62,

logeqv

This returns the bit-wise logical EQUIVALENCE

(also known as exclusive nor) of its arguments.

If no argument is given, then the result is -1,

which is an identity for this operation.

(logeqv a b) gives -50

Example

Create a new source code file named main.lisp and type the following code in it:

(setq a 60)

(setq b 13)

(format t "~% BITWISE AND of a and b is ~a" (logand a b))

(format t "~% BITWISE INCLUSIVE OR of a and b is ~a" (logior a b))

(format t "~% BITWISE EXCLUSIVE OR of a and b is ~a" (logxor a b))

(format t "~% A NOT B is ~a" (lognor a b))

(format t "~% A EQUIVALANCE B is ~a" (logeqv a b))

LISP

 26

(terpri)

(terpri)

(setq a 10)

(setq b 0)

(setq c 30)

(setq d 40)

(format t "~% Result of bitwise and operation on 10, 0, 30, 40 is ~a" (logand

a b c d))

(format t "~% Result of bitwise or operation on 10, 0, 30, 40 is ~a" (logior

a b c d))

(format t "~% Result of bitwise xor operation on 10, 0, 30, 40 is ~a" (logxor

a b c d))

(format t "~% Result of bitwise equivalence operation on 10, 0, 30, 40 is ~a"

(logeqv a b c d))

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and

the result is:

BITWISE AND of a and b is 12

BITWISE INCLUSIVE OR of a and b is 61

BITWISE EXCLUSIVE OR of a and b is 49

A NOT B is -62

A EQUIVALANCE B is -50

Result of bitwise and operation on 10, 0, 30, 40 is 0

Result of bitwise or operation on 10, 0, 30, 40 is 62

Result of bitwise xor operation on 10, 0, 30, 40 is 60

Result of bitwise equivalence operation on 10, 0, 30, 40 is -61

LISP

 27

Decision making structures require the programmer to specify one or more conditions

to be evaluated or tested by the program, along with a statement or statements to be

executed if the condition is determined to be true, and optionally, other statements to

be executed if the condition is determined to be false.

The following diagram shows the general form of a typical decision making structure

found in most of the programming languages:

LISP provides following types of decision making constructs. Click the following links

to check their detail.

Construct Description

cond

This construct is used for checking multiple test-action clauses.

It can be compared to the nested if statements in other

programming languages.

if The if construct has various forms. In simplest form it is

followed by a test clause, a test action and some other

10. DECISION MAKING

LISP

 28

consequent action(s). If the test clause evaluates to true, then

the test action is executed. Otherwise, the consequent clause

is evaluated.

when

In simplest form it is followed by a test clause, and a test

action. If the test clause evaluates to true, then the test action

is executed. Otherwise, the consequent clause is evaluated.

case

This construct implements multiple test-action clauses such as

cond construct. However, it evaluates a key form and allows

multiple action clauses based on the evaluation of that key

form.

The cond Construct in LISP

The cond construct in LISP is most commonly used to permit branching.

Syntax for cond is:

(cond (test1 action1)

 (test2 action2)

 ...

 (testn actionn))

Each clause within the cond statement consists of a conditional test and an action to

be performed.

If the first test following the cond, i.e. test1, is evaluated to be true, then the

corresponding action part, i.e. action1 is executed. Further, its value is returned and

the rest of the clauses are skipped.

If test1 evaluates to be nil, then program control moves to the second clause without

executing action1, and the same process is followed.

If none of the test conditions are evaluated to be true, then the cond statement

returns nil.

Example

Create a new source code file named main.lisp and type the following code in it:

(setq a 10)

(cond ((> a 20)

 (format t "~% a is less than 20"))

LISP

 29

(t (format t "~% value of a is ~d " a)))

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and

the result is:

value of a is 10

Note that the t in the second clause ensures that the last action is performed if none

other is fulfilled.

The if Construct

The if macro is followed by a test clause that evaluates to t or nil. If the test clause is

evaluated to the t, then the action following the test clause is executed. If it is nil, then

the next clause is evaluated.

Syntax for if:

(if (test-clause) (<action1) (action2))

Example 1

Create a new source code file named main.lisp and type the following code in it:

(setq a 10)

(if (> a 20)

 (format t "~% a is less than 20"))

(format t "~% value of a is ~d " a)

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and

the result is:

value of a is 10

Example 2

The if clause can be followed by an optional then clause:

Create a new source code file named main.lisp and type the following code in it:

(setq a 10)

(if (> a 20)

 then (format t "~% a is less than 20"))

(format t "~% value of a is ~d " a)

LISP

 30

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and

the result is:

a is less than 20

value of a is 10

Example 3

You can also create an if-then-else type statement using the if clause.

Create a new source code file named main.lisp and type the following code in it:

(setq a 100)

(if (> a 20)

 (format t "~% a is greater than 20")

 (format t "~% a is less than 20"))

(format t "~% value of a is ~d " a)

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and

the result is:

a is greater than 20

value of a is 100

The when Construct

The when macro is followed by a test clause that evaluates to t or nil. If the test clause

is evaluated to nil, then no form is evaluated and nil is returned. However, if the test

result is t, then the action following the test clause is executed.

Syntax for when macro:

(when (test-clause) (<action1))

Example

Create a new source code file named main.lisp and type the following code in it:

 (setq a 100)

(when (> a 20)

 (format t "~% a is greater than 20"))

(format t "~% value of a is ~d " a)

LISP

 31

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and

the result is:

a is greater than 20

value of a is 100

The case Construct

The case construct implements multiple test-action clauses such as the cond construct.

However, it evaluates a key form and allows multiple action clauses based on the

evaluation of that key form.

Syntax for case macro:

The template for CASE is:

(case (keyform)

((key1) (action1 action2 ...))

((key2) (action1 action2 ...))

...

((keyn) (action1 action2 ...)))

Example

Create a new source code file named main.lisp and type the following code in it:

(setq day 4)

(case day

(1 (format t "~% Monday"))

(2 (format t "~% Tuesday"))

(3 (format t "~% Wednesday"))

(4 (format t "~% Thursday"))

(5 (format t "~% Friday"))

(6 (format t "~% Saturday"))

(7 (format t "~% Sunday")))

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and

the result is:

Thursday

LISP

 32

Consider a situation, where you need to execute a block of code numbers of times. A

loop statement allows us to execute a statement or group of statements multiple

times. The following diagram shows the general form of a loop statement in most of

the programming languages:

LISP provides the following types of constructs to handle looping requirements.

Construct Description

Loop

It is the simplest form of iteration provided by LISP. In its simplest form,

it allows you to execute some statement(s) repeatedly until it finds

a return statement.

loop for
It allows you to implement a for-loop like iteration as most common in

other languages.

do
It is also used for performing iteration using LISP. It provides a structured

form of iteration.

dotimes It allows looping for some fixed number of iterations.

11. LOOPS

LISP

 33

dolist It allows iteration through each element of a list.

The loop Construct

The loop construct is the simplest form of iteration provided by LISP. In its simplest

form, it allows you to execute some statement(s) repeatedly until it finds

a return statement.

Syntax for loop:

(loop (s-expressions))

Example

Create a new source code file named main.lisp and type the following code in it:

(setq a 10)

(loop

 (setq a (+ a 1))

 (write a)

 (terpri)

 (when (> a 17) (return a)))

When you execute the code, it returns the following result:

11

12

13

14

15

16

17

18

Note that without the return statement, the loop macro would produce an infinite loop.

The loop for Construct

The loop for construct allows you to implement a for-loop like iteration as most

common in other languages.

LISP

 34

It allows you to:

 set up variables for iteration

 specify expression(s) that can conditionally terminate the iteration

 specify expression(s) for performing some job on each iteration

 specify expression(s), and expressions for doing some job before exiting the

loop

The for loop for construct follows several syntaxes:

(loop for loop-variable in <a list>

 do (action))

(loop for loop-variable from value1 to value2

 do (action))

Example 1

Create a new source code file named main.lisp and type the following code in it:

(loop for x in '(tom dick harry)

 do (format t " ~s" x)

)

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and

the result is:

TOM DICK HARRY

Example 2

Create a new source code file named main.lisp and type the following code in it:

(loop for a from 10 to 20

 do (print a)

)

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and

the result is:

10

11

12

LISP

 35

13

14

15

16

17

18

19

20

Example 3

Create a new source code file named main.lisp and type the following code in it:

(loop for x from 1 to 20

 if(evenp x)

 do (print x)

)

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and

the result is:

2

4

6

8

10

12

14

16

18

20

The do Construct

The do construct is also used for performing iteration using LISP. It provides a

structured form of iteration.

LISP

 36

Syntax for do:

(do (variable1 value1 updated-value1)

 (variable2 value2 updated-value2)

 (variable3 value3 updated-value3)

 ...

(test return-value)

(s-expressions))

The initial values of each variable is evaluated and bound to the respective variable.

The updated value in each clause corresponds to an optional update statement that

specifies how the values of the variables will be updated with each iteration.

After each iteration, the test is evaluated.If it returns a non-nil or true, the return-

value is evaluated and returned.The last s-expression(s) is optional. If present, they

are executed after every iteration, until the test value returns true.

Example

Create a new source code file named main.lisp and type the following code in it:

(do ((x 0 (+ 2 x))

 (y 20 (- y 2)))

 ((= x y)(- x y))

 (format t "~% x = ~d y = ~d" x y))

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and

the result is:

x = 0 y = 20

x = 2 y = 18

x = 4 y = 16

x = 6 y = 14

x = 8 y = 12

The dotimes Construct

The dotimes construct allows looping for some fixed number of iterations.

Example

Create a new source code file named main.lisp and type the following code in it:

LISP

 37

(dotimes (n 11)

 (print n) (prin1 (* n n)))

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and

the result is:

0 0

1 1

2 4

3 9

4 16

5 25

6 36

7 49

8 64

9 81

10 100

The dolist Construct

The dolist construct allows iteration through each element of a list.

Example

Create a new source code file named main.lisp and type the following code in it:

(dolist (n '(1 2 3 4 5 6 7 8 9))

 (format t "~% Number: ~d Square: ~d" n (* n n)))

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and

the result is:

Number: 1 Square: 1

Number: 2 Square: 4

Number: 3 Square: 9

Number: 4 Square: 16

Number: 5 Square: 25

Number: 6 Square: 36

Number: 7 Square: 49

Number: 8 Square: 64

LISP

 38

Number: 9 Square: 81

Exiting Gracefully from a Block

The block and return-from allows you to exit gracefully from any nested blocks in

case of any error.

The block function allows you to create a named block with a body composed of zero

or more statements.

Syntax for block:

(block block-name(

...

...

))

The return-from function takes a block name and an optional (the default is nil) return

value. The following example demonstrates this:

Example

Create a new source code file named main.lisp and type the following code in it:

(defun demo-function (flag)

 (print 'entering-outer-block)

 (block outer-block

 (print 'entering-inner-block)

 (print (block inner-block

 (if flag

 (return-from outer-block 3)

 (return-from inner-block 5))

 (print 'This-wil--not-be-printed)))

 (print 'left-inner-block)

 (print 'leaving-outer-block)

 t))

(demo-function t)

(terpri)

(demo-function nil)

LISP

 39

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and

the result is:

ENTERING-OUTER-BLOCK

ENTERING-INNER-BLOCK

ENTERING-OUTER-BLOCK

ENTERING-INNER-BLOCK

5

LEFT-INNER-BLOCK

LEAVING-OUTER-BLOCK

LISP

 40

A function is a group of statements that perform a task together.

You can divide your code into separate functions. How you divide your code among

different functions is up to you, but logically the division is done in such a manner that

each function performs a specific task.

Defining Functions in LISP

The macro named defun is used for defining functions. The defun macro needs three

arguments:

1. Name of the function

2. Parameters of the function

3. Body of the function

Syntax for defun:

(defun name (parameter-list)

 "Optional documentation string."

 body)

Let us illustrate the concept with simple examples.

Example 1

Let us write a function named averagenum to print the average of four numbers. We

will send these numbers as parameters.

Create a new source code file named main.lisp and type the following code in it:

(defun averagenum (n1 n2 n3 n4)

 (/ (+ n1 n2 n3 n4) 4))

(write(averagenum 10 20 30 40))

When you execute the code, it returns the following result:

25

12. FUNCTIONS

LISP

 41

Example 2

Let us define and call a function that calculates the area of a circle when the radius of

the circle is given as an argument.

Create a new source code file named main.lisp and type the following code in it:

(defun area-circle(rad)

"Calculates area of a circle with given radius"

 (terpri)

 (format t "Radius: ~5f" rad)

 (format t "~%Area: ~10f" (* 3.141592 rad rad)))

 (area-circle 10)

Note:

 You can provide an empty list as parameters, which means the function takes

no arguments, the list is empty, written as ().

 LISP also allows optional, multiple, and keyword arguments.

 The documentation string describes the purpose of the function. It is associated

with the name of the function and can be obtained using

the documentation function.

 The body of the function may consist of any number of LISP expressions.

 The value of the last expression in the body is returned as the value of the

function.

 You can also return a value from the function using the return-from special

operator.

Let us discuss the above concepts in brief.

Optional Parameters

You can define a function with optional parameters. To do this, you need to put the

symbol &optional before the names of the optional parameters.

Let us write a function that displays the parameters it received.

Example

Create a new source code file named main.lisp and type the following code in it:

(defun show-members (a b &optional c d) (write (list a b c d)))

(show-members 1 2 3)

LISP

 42

(terpri)

(show-members 'a 'b 'c 'd)

(terpri)

(show-members 'a 'b)

(terpri)

(show-members 1 2 3 4)

When you execute the code, it returns the following result:

(1 2 3 NIL)

(A B C D)

(A B NIL NIL)

(1 2 3 4)

Note that the parameter c and d are the optional parameters in the above example.

Rest Parameters

Some functions need to take a variable number of arguments.

For example, the format function we are using needs two arguments, the stream and

the control string. However, after the string, it needs a variable number of arguments

depending upon the number of values to be displayed in the string. Similarly, the +

function, or the * function may also take a variable number of arguments. You can

provide for such variable number of parameters using the symbol &rest.

The following example illustrates the concept:

Example

Create a new source code file named main.lisp and type the following code in it:

(defun show-members (a b &rest values) (write (list a b values)))

(show-members 1 2 3)

(terpri)

(show-members 'a 'b 'c 'd)

(terpri)

(show-members 'a 'b)

(terpri)

(show-members 1 2 3 4)

(terpri)

LISP

 43

(show-members 1 2 3 4 5 6 7 8 9)

When you execute the code, it returns the following result:

(1 2 (3))

(A B (C D))

(A B NIL)

(1 2 (3 4))

(1 2 (3 4 5 6 7 8 9))

Keyword Parameters

Keyword parameters allow you to specify which values go with which particular

parameter. They are indicated using &key symbol. When you send the values to the

function, you must precede the values with parameter-name. The following example

illustrates the concept:

Example

Create a new source code file named main.lisp and type the following code in it:

(defun show-members (&key a b c d) (write (list a b c d)))

(show-members :a 1 :c 2 :d 3)

(terpri)

(show-members :a 'p :b 'q :c 'r :d 's)

(terpri)

(show-members :a 'p :d 'q)

(terpri)

(show-members :a 1 :b 2)

When you execute the code, it returns the following result:

(1 NIL 2 3)

(P Q R S)

(P NIL NIL Q)

(1 2 NIL NIL)

Returning Values from a Function

By default, a function in LISP returns the value of the last expression evaluated. The

following examples demonstrate this:

LISP

 44

Example 1

Create a new source code file named main.lisp and type the following code in it:

(defun add-all(a b c d)

 (+ a b c d))

(setq sum (add-all 10 20 30 40))

(write sum)

(terpri)

(write (add-all 23.4 56.7 34.9 10.0))

When you execute the code, it returns the following result:

100

125.0

However, you can use the return-from special operator to immediately return any

value from the function.

Example 2

Create a new source code file named main.lisp and type the following code in it:

(defun myfunc (num)

 (return-from myfunc 10)

 num)

(write (myfunc 20))

When you execute the code, it returns the following result:

10

Change the code a little:

(defun myfunc (num)

 (return-from myfunc 10)

 write num)

(write (myfunc 20))

It still returns:

10

LISP

 45

Lambda Functions

At times you may need a function in only one place in your program and the function

is so trivial that you may not give it a name, or may not like to store it in the symbol

table, and would rather write an unnamed or anonymous function.

LISP allows you to write anonymous functions that are evaluated only when they are

encountered in the program. These functions are called Lambda functions.

You can create such functions using the lambda expression. The syntax for the lambda

expression is as follows:

(lambda (parameters) body)

A lambda form cannot be evaluated and it must appear only where LISP expects to

find a function.

Example

Create a new source code file named main.lisp and type the following code in it:

(write ((lambda (a b c x)

 (+ (* a (* x x)) (* b x) c))

 4 2 9 3))

When you execute the code, it returns the following result:

51

Mapping Functions

Mapping functions are a group of functions that could be applied successively to one

or more lists of elements. The results of applying these functions to a list are placed in

a new list and that new list is returned.

For example, the mapcar function processes successive elements of one or more lists.

The first argument of the mapcar function is a function and the remaining arguments

are the list(s), to which the function is applied. The argument function is applied to the

successive elements and that results into a newly constructed list. If the argument lists

are not equal in length, then the process of mapping stops upon reaching the end of

the shortest list. The resulting list will have the same number of elements as the

shortest input list.

LISP

 46

Example 1

Let us start with a simple example. Add the number 1 to each element of the list (23,

34, 45, 56, 67, 78, 89).

Create a new source code file named main.lisp and type the following code in it:

(write (mapcar '1+ '(23 34 45 56 67 78 89)))

When you execute the code, it returns the following result:

(24 35 46 57 68 79 90)

Example 2

Let us write a function that returns cube of the elements of a list. Let us use a lambda

function for calculating the cube of numbers.

Create a new source code file named main.lisp and type the following code in it:

(defun cubeMylist(lst)

 (mapcar #'(lambda(x) (* x x x)) lst))

 (write (cubeMylist '(2 3 4 5 6 7 8 9)))

When you execute the code, it returns the following result:

(8 27 64 125 216 343 512 729)

Example 3

Create a new source code file named main.lisp and type the following code in it:

(write (mapcar '+ '(1 3 5 7 9 11 13) '(2 4 6 8)))

When you execute the code, it returns the following result:

(3 7 11 15)

LISP

 47

Predicates are functions that test their arguments for some specific conditions and

returns nil if the condition is false, or some non-nil value if the condition is true.

The following table shows some of the most commonly used predicates:

Predicate Description

atom
It takes one argument and returns t if the argument is an atom, nil

otherwise.

equal
It takes two arguments and returns t if they are structurally equal

or nil otherwise.

eq
It takes two arguments and returns t if they are same identical objects,

sharing the same memory location, or nil otherwise.

eql

It takes two arguments and returns t if both arguments are equal, or they

are numbers of the same type with the same value, or they are character

objects that represent the same character, or nil otherwise.

evenp
It takes one numeric argument and returns t if the argument is even

number or nil if otherwise.

oddp
It takes one numeric argument and returns t if the argument is odd

number or nil if otherwise.

zerop
It takes one numeric argument and returns t if the argument is zero,

or nil otherwise.

null
It takes one argument and returns t if the argument evaluates to nil.

Otherwise it returns nil.

listp
It takes one argument and returns t if the argument evaluates to a list.

Otherwise it returns nil.

13. PREDICATES

LISP

 48

greaterp

It takes one or more arguments and returns t if either there is a single

argument or the arguments are successively larger from left to right,

or nil if otherwise.

lessp
It takes one or more arguments and returns t if a single argument or the

arguments are successively smaller from left to right, or nil if otherwise.

numberp
It takes one argument and returns t if the argument is a number,

or nil otherwise.

symbolp
It takes one argument and returns t if the argument is a symbol.

Otherwise, it returns nil.

integerp
It takes one argument and returns t if the argument is an integer.

Otherwise, it returns nil.

rationalp
It takes one argument and returns t if the argument is rational number,

either a ratio or a number. Otherwise, it returns nil.

floatp
It takes one argument and returns t if the argument is a floating point

number. Otherwise, it returns nil.

realp
It takes one argument and returns t if the argument is a real number.

Otherwise, it returns nil.

complexp
It takes one argument and returns t if the argument is a complex number.

Otherwise, it returns nil.

characterp
It takes one argument and returns t if the argument is a character.

Otherwise, it returns nil.

stringp
It takes one argument and returns t if the argument is a string object.

Otherwise, it returns nil.

arrayp
It takes one argument and returns t if the argument is an array object.

Otherwise, it returnsnil.

packagep
It takes one argument and returns t if the argument is a package.

Otherwise, it returns nil.

LISP

 49

Example 1

Create a new source code file named main.lisp and type the following code in it:

(write (atom 'abcd))

(terpri)

(write (equal 'a 'b))

(terpri)

(write (evenp 10))

(terpri)

(write (evenp 7))

(terpri)

(write (oddp 7))

(terpri)

(write (zerop 0.0000000001))

(terpri)

(write (eq 3 3.0))

(terpri)

(write (equal 3 3.0))

(terpri)

(write (null nil))

When you execute the code, it returns the following result:

T

NIL

T

NIL

T

NIL

NIL

NIL

T

LISP

 50

Example 2

Create a new source code file named main.lisp and type the following code in it:

(defun factorial (num)

 (cond ((zerop num) 1)

 (t (* num (factorial (- num 1))))))

(setq n 6)

(format t "~% Factorial ~d is: ~d" n (factorial n))

When you execute the code, it returns the following result:

Factorial 6 is: 720

LISP

 51

Common LISP defines several kinds of numbers. The number data type includes

various kinds of numbers supported by LISP. The following numeric data types are

supported by LISP:

 Integers

 Ratios

 Floating-point numbers

 Complex numbers

The following diagram shows the number hierarchy and various numeric data types

available in LISP:

14. NUMBERS

LISP

 52

Various Numeric Types in LISP

The following table describes various number type data available in LISP:

Data

type
Description

fixnum

This data type represents integers which are not too large. Their values

range from

-215 to 215-1. (it is machine-dependent)

bignum
These are very large numbers with size limited by the amount of memory

allocated for LISP, they are not fixnum numbers.

ratio

This represents the ratio of two numbers in the numerator/denominator

form. The / function always produces the result in ratios, with integer

arguments.

float
It represents non-integer numbers. There are four float data types with

increasing precision.

complex
It represents complex numbers, which are denoted by #c. The real and

imaginary parts could be both either rational or floating point numbers.

Example

Create a new source code file named main.lisp and type the following code in it:

(write (/ 1 2))

(terpri)

(write (+ (/ 1 2) (/ 3 4)))

(terpri)

(write (+ #c(1 2) #c(3 -4)))

When you execute the code, it returns the following result:

1/2

5/4

#C(4 -2)

LISP

 53

Number Functions

The following table describes some commonly used numeric functions:

Function Description

+, -, *, / Respective arithmetic operations

sin, cos, tan,

acos, asin, atan
Respective trigonometric functions.

sinh, cosh,

tanh, acosh,

asinh, atanh

Respective hyperbolic functions.

exp Exponentiation function. Calculates ex

expt Exponentiation function, takes base and power both.

sqrt It calculates the square root of a number.

log
Logarithmic function. It one parameter is given, then it calculates its

natural logarithm, otherwise the second parameter is used as base.

conjugate
It calculates the complex conjugate of a number. In case of a real

number, it returns the number itself.

abs It returns the absolute value (or magnitude) of a number.

gcd It calculates the greatest common divisor of the given numbers

lcm It calculates the least common multiple of the given numbers

isqrt
It gives the greatest integer less than or equal to the exact square

root of a given natural number.

floor, ceiling,

truncate, round

All these functions take two arguments as a number and returns the

quotient; floorreturns the largest integer that is not greater than

ratio, ceiling chooses the smaller integer that is larger than

ratio, truncate chooses the integer of the same sign as ratio with the

largest absolute value that is less than absolute value of ratio,

and roundchooses an integer that is closest to ratio.

LISP

 54

ffloor, fceiling,

ftruncate,

fround

Does the same as above, but returns the quotient as a floating point

number.

mod, rem Returns the remainder in a division operation.

float Converts a real number to a floating point number.

rational,

rationalize
Converts a real number to rational number.

numerator,

denominator
Returns the respective parts of a rational number.

realpart,

imagpart
Returns the real and imaginary part of a complex number.

Example

Create a new source code file named main.lisp and type the following code in it:

(write (/ 45 78))

(terpri)

(write (floor 45 78))

(terpri)

(write (/ 3456 75))

(terpri)

(write (floor 3456 75))

(terpri)

(write (ceiling 3456 75))

(terpri)

(write (truncate 3456 75))

(terpri)

(write (round 3456 75))

(terpri)

(write (ffloor 3456 75))

(terpri)

(write (fceiling 3456 75))

LISP

 55

(terpri)

(write (ftruncate 3456 75))

(terpri)

(write (fround 3456 75))

(terpri)

(write (mod 3456 75))

(terpri)

(setq c (complex 6 7))

(write c)

(terpri)

(write (complex 5 -9))

(terpri)

(write (realpart c))

(terpri)

(write (imagpart c))

When you execute the code, it returns the following result:

15/26

0

1152/25

46

47

46

46

46.0

47.0

46.0

46.0

6

#C(6 7)

#C(5 -9)

6

7

LISP

 56

In LISP, characters are represented as data objects of type character. You can denote

a character object preceding #\ before the character itself. For example, #\a means

the character a.

Space and other special characters can be denoted by preceding #\ before the name

of the character. For example, #\SPACE represents the space character.

The following example demonstrates this:

Example

Create a new source code file named main.lisp and type the following code in it:

(write 'a)

(terpri)

(write #\a)

(terpri)

(write-char #\a)

(terpri)

(write-char 'a)

When you execute the code, it returns the following result:

A

#\a

a

*** - WRITE-CHAR: argument A is not a character

Special Characters

Common LISP allows using the following special characters in your code. They are

called the semi-standard characters.

 #\Backspace

 #\Tab

 #\Linefeed

15. CHARACTERS

LISP

 57

 #\Page

 #\Return

 #\Rubout

Character Comparison Functions

Numeric comparison functions and operators, like, < and > do not work on characters.

Common LISP provides other two sets of functions for comparing characters in your

code. One set is case-sensitive and the other case-insensitive.

The following table provides the functions:

Case-

Sensitive

Functions

Case-

Insensitive

Functions

Description

char= char-equal
Checks if the values of the operands are all equal or

not, if yes then condition becomes true.

char/=
char-not-

equal

Checks if the values of the operands are all different

or not, if values are not equal, then condition becomes

true.

char< char-lessp
Checks if the values of the operands are monotonically

decreasing.

char> char-greaterp
Checks if the values of the operands are monotonically

increasing.

char<=
char-not-

greaterp

Checks if the value of any left operand is greater than

or equal to the value of next right operand. If yes, then

condition becomes true.

char>= char-not-lessp

Checks if the value of any left operand is less than or

equal to the value of its right operand. If yes, then

condition becomes true.

LISP

 58

Example

Create a new source code file named main.lisp and type the following code in it:

; case-sensitive comparison

(write (char= #\a #\b))

(terpri)

(write (char= #\a #\a))

(terpri)

(write (char= #\a #\A))

(terpri)

;case-insensitive comparision

(write (char-equal #\a #\A))

(terpri)

(write (char-equal #\a #\b))

(terpri)

(write (char-lessp #\a #\b #\c))

(terpri)

(write (char-greaterp #\a #\b #\c))

When you execute the code, it returns the following result:

NIL

T

NIL

T

NIL

T

NIL

LISP

 59

LISP allows you to define single or multiple-dimension arrays using the make-

array function. An array can store any LISP object as its elements.

All arrays consist of contiguous memory locations. The lowest address corresponds to

the first element and the highest address corresponds to the last element.

The number of dimensions of an array is called its rank.

In LISP, an array element is specified by a sequence of non-negative integer indices.

The length of the sequence must equal the rank of the array. Indexing always starts

from zero.

Example

To create an array with 10- cells, named my-array, we can write:

(setf my-array (make-array '(10)))

The aref function allows accessing the contents of the cells. It takes two arguments,

the name of the array and the index value.

Example

To access the content of the tenth cell, we write:

(aref my-array 9)

Example 1

Create a new source code file named main.lisp and type the following code in it:

(write (setf my-array (make-array '(10))))

(terpri)

(setf (aref my-array 0) 25)

(setf (aref my-array 1) 23)

16. ARRAYS

LISP

 60

(setf (aref my-array 2) 45)

(setf (aref my-array 3) 10)

(setf (aref my-array 4) 20)

(setf (aref my-array 5) 17)

(setf (aref my-array 6) 25)

(setf (aref my-array 7) 19)

(setf (aref my-array 8) 67)

(setf (aref my-array 9) 30)

(write my-array)

When you execute the code, it returns the following result:

#(NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL)

#(25 23 45 10 20 17 25 19 67 30)

Example 2

Let us create a 3-by-3 array.

Create a new source code file named main.lisp and type the following code in it:

(setf x (make-array '(3 3)

 :initial-contents '((0 1 2) (3 4 5) (6 7 8))))

(write x)

When you execute the code, it returns the following result:

#2A((0 1 2) (3 4 5) (6 7 8))

Example 3

Create a new source code file named main.lisp and type the following code in it:

(setq a (make-array '(4 3)))

(dotimes (i 4)

 (dotimes (j 3)

 (setf (aref a i j) (list i 'x j '= (* i j)))))

(dotimes (i 4)

 (dotimes (j 3)

 (print (aref a i j))))

When you execute the code, it returns the following result:

LISP

 61

(0 X 0 = 0)

(0 X 1 = 0)

(0 X 2 = 0)

(1 X 0 = 0)

(1 X 1 = 1)

(1 X 2 = 2)

(2 X 0 = 0)

(2 X 1 = 2)

(2 X 2 = 4)

(3 X 0 = 0)

(3 X 1 = 3)

(3 X 2 = 6)

Syntax for the make-array Function

The make-array function takes many other arguments. Let us look at the complete

syntax of this function:

make-array dimensions :element-type :initial-element :initial-contents

:adjustable :fill-pointer :displaced-to :displaced-index-offset

Apart from the dimensions argument, all other arguments are keywords. The following

table provides brief description of the arguments.

Argument Description

dimensions
It gives the dimensions of the array. It is a number for one-dimensional

array, and a list for multi-dimensional array.

:element-

type
It is the type specifier, default value is T, i.e. any type

:initial-

element

Initial elements value. It makes an array with all the elements initialized

to a particular value.

:initial-

content
Initial content as object.

LISP

 62

:adjustable

It helps in creating a resizable (or adjustable) vector whose underlying

memory can be resized. The argument is a Boolean value indicating

whether the array is adjustable or not, default value being NIL.

:fill-pointer
It keeps track of the number of elements actually stored in a resizable

vector

:displaced-to

It helps in creating a displaced array or shared array that shares its

contents with the specified array. Both the arrays should have same

element type. The :displaced-to option may not be used with the

:initial-element or :initial-contents option. This argument defaults to

nil.

:displaced-

index-offset
It gives the index-offset of the created and shared array.

Example 4

Create a new source code file named main.lisp and type the following code in it:

(setq myarray (make-array '(3 2 3)

 :initial-contents

 '(((a b c) (1 2 3))

 ((d e f) (4 5 6))

 ((g h i) (7 8 9))

)))

(setq array2 (make-array 4 :displaced-to myarray

 :displaced-index-offset 2))

(write myarray)

(terpri)

(write array2)

When you execute the code, it returns the following result:

#3A(((A B C) (1 2 3)) ((D E F) (4 5 6)) ((G H I) (7 8 9)))

#(C 1 2 3)

If the displaced array is two dimensional:

LISP

 63

(setq myarray (make-array '(3 2 3)

 :initial-contents

 '(((a b c) (1 2 3))

 ((d e f) (4 5 6))

 ((g h i) (7 8 9))

)))

(setq array2 (make-array '(3 2) :displaced-to myarray

 :displaced-index-offset 2))

(write myarray)

(terpri)

(write array2)

When you execute the code, it returns the following result:

#3A(((A B C) (1 2 3)) ((D E F) (4 5 6)) ((G H I) (7 8 9)))

#2A((C 1) (2 3) (D E))

Let us change the displaced index offset to 5:

(setq myarray (make-array '(3 2 3)

 :initial-contents

 '(((a b c) (1 2 3))

 ((d e f) (4 5 6))

 ((g h i) (7 8 9))

)))

(setq array2 (make-array '(3 2) :displaced-to myarray

 :displaced-index-offset 5))

(write myarray)

(terpri)

(write array2)

When you execute the code, it returns the following result:

#3A(((A B C) (1 2 3)) ((D E F) (4 5 6)) ((G H I) (7 8 9)))

#2A((3 D) (E F) (4 5))

Example 5

Create a new source code file named main.lisp and type the following code in it:

LISP

 64

;a one dimensional array with 5 elements,

;initail value 5

(write (make-array 5 :initial-element 5))

(terpri)

;two dimensional array, with initial element a

(write (make-array '(2 3) :initial-element 'a))

(terpri)

;an array of capacity 14, but fill pointer 5, is 5

(write(length (make-array 14 :fill-pointer 5)))

(terpri)

;however its length is 14

(write (array-dimensions (make-array 14 :fill-pointer 5)))

(terpri)

; a bit array with all initial elements set to 1

(write(make-array 10 :element-type 'bit :initial-element 1))

(terpri)

; a character array with all initial elements set to a

; is a string actually

(write(make-array 10 :element-type 'character :initial-element #\a))

(terpri)

; a two dimensional array with initial values a

(setq myarray (make-array '(2 2) :initial-element 'a :adjustable t))

(write myarray)

(terpri)

;readjusting the array

(adjust-array myarray '(1 3) :initial-element 'b)

(write myarray)

When you execute the code, it returns the following result:

#(5 5 5 5 5)

#2A((A A A) (A A A))

5

(14)

#*1111111111

"aaaaaaaaaa"

LISP

 65

#2A((A A) (A A))

#2A((A A B))

LISP

 66

Strings in Common LISP are vectors, i.e., one-dimensional array of characters. String

literals are enclosed in double quotes. Any character supported by the character set

can be enclosed within double quotes to make a string, except the double quote

character (") and the escape character (\). However, you can include these by escaping

them with a backslash (\).

Example

Create a new source code file named main.lisp and type the following code in it:

(write-line "Hello World")

(write-line "Welcome to Tutorials Point")

;escaping the double quote character

(write-line "Welcome to \"Tutorials Point\"")

When you execute the code, it returns the following result:

Hello World

Welcome to Tutorials Point

Welcome to "Tutorials Point"

String Comparison Functions

Numeric comparison functions and operators, like, < and > do not work on strings.

Common LISP provides other two sets of functions for comparing strings in your code.

One set is case-sensitive and the other case-insensitive.

The following table provides the functions:

Case-

Sensitive

Functions

Case-

insensitive

Functions

Description

string= string-equal
Checks if the values of the operands are all equal

or not, if yes then condition becomes true.

17. STRINGS

LISP

 67

string/= string-not-equal

Checks if the values of the operands are all different

or not, if values are not equal then condition

becomes true.

string< string-lessp
Checks if the values of the operands are

monotonically decreasing.

string> string-greaterp
Checks if the values of the operands are

monotonically increasing.

string<=
string-not-

greaterp

Checks if the value of any left operand is greater

than or equal to the value of next right operand, if

yes then condition becomes true.

string>= string-not-lessp

Checks if the value of any left operand is less than

or equal to the value of its right operand, if yes then

condition becomes true.

Example

Create a new source code file named main.lisp and type the following code in it:

; case-sensitive comparison

(write (string= "this is test" "This is test"))

(terpri)

(write (string> "this is test" "This is test"))

(terpri)

(write (string< "this is test" "This is test"))

(terpri)

;case-insensitive comparision

(write (string-equal "this is test" "This is test"))

(terpri)

(write (string-greaterp "this is test" "This is test"))

(terpri)

(write (string-lessp "this is test" "This is test"))

(terpri)

;checking non-equal

(write (string/= "this is test" "this is Test"))

LISP

 68

(terpri)

(write (string-not-equal "this is test" "This is test"))

(terpri)

(write (string/= "lisp" "lisping"))

(terpri)

(write (string/= "decent" "decency"))

When you execute the code, it returns the following result:

NIL

0

NIL

T

NIL

NIL

8

NIL

4

5

Case Controlling Functions

The following table describes the case controlling functions:

Function Description

string-upcase Converts the string to upper case

string-downcase Converts the string to lower case

string-capitalize Capitalizes each character in the string

LISP

 69

Example

Create a new source code file named main.lisp and type the following code in it:

(write-line (string-upcase "a big hello from tutorials point"))

(write-line (string-capitalize "a big hello from tutorials point"))

When you execute the code, it returns the following result:

A BIG HELLO FROM TUTORIALS POINT

A Big Hello From Tutorials Point

Trimming Strings

The following table describes the string trimming functions:

Function Description

string-trim

It takes a string of character(s) as first argument and a string as the

second argument and returns a substring where all characters that are in

the first argument are removed off the argument string.

String-left-

trim

It takes a string of character(s) as first argument and a string as the

second argument and returns a substring where all characters that are in

the first argument are removed off the beginning of the argument string.

String-

right-trim

It takes a string character(s) as first argument and a string as the second

argument and returns a substring where all characters that are in the first

argument are removed off the end of the argument string

Example

Create a new source code file named main.lisp and type the following code in it:

(write-line (string-trim " " " a big hello from tutorials point "))

(write-line (string-left-trim " " " a big hello from tutorials point "))

(write-line (string-right-trim " " " a big hello from tutorials point "))

(write-line (string-trim " a" " a big hello from tutorials point "))

LISP

 70

When you execute the code, it returns the following result:

a big hello from tutorials point

a big hello from tutorials point

 a big hello from tutorials point

big hello from tutorials point

Other String Functions

Strings in LISP are arrays and thus also sequences. We will cover these data types in

coming tutorials. All functions that are applicable to arrays and sequences also apply

to strings. However, here we demonstrate some commonly used functions using

various examples.

Calculating Length of String

The length function calculates the length of a string.

Extracting Sub-string

The subseq function returns a sub-string (as a string is also a sequence) starting at a

particular index and continuing up to a particular ending index or the end of the string.

Accessing a Character in a String

The char function allows accessing individual characters of a string.

Example

Create a new source code file named main.lisp and type the following code in it:

(write (length "Hello World"))

(terpri)

(write-line (subseq "Hello World" 6))

(write (char "Hello World" 6))

When you execute the code, it returns the following result:

11

World

#\W

LISP

 71

Sorting and Merging strings

The sort function allows sorting a string. It takes a sequence (vector or string) and a

two-argument predicate and returns a sorted version of the sequence.

The merge function takes two sequences and a predicate and returns a sequence

produced by merging the two sequences, according to the predicate.

Example

Create a new source code file named main.lisp and type the following code in it:

;sorting the strings

(write (sort (vector "Amal" "Akbar" "Anthony") #'string<))

(terpri)

;merging the strings

(write (merge 'vector (vector "Rishi" "Zara" "Priyanka") (vector "Anju" "Anuj"

"Avni") #'string<))

When you execute the code, it returns the following result:

#("Akbar" "Amal" "Anthony")

#("Anju" "Anuj" "Avni" "Rishi" "Zara" "Priyanka")

Reversing a String

The reverse function reverses a string.

Example

Create a new source code file named main.lisp and type the following code in it:

(write-line (reverse "Are we not drawn onward, we few, drawn onward to new

era"))

When you execute the code, it returns the following result:

are wen ot drawno nward ,wef ew ,drawno nward ton ew erA

Concatenating Strings

The concatenate function concatenates two strings. This is generic sequence function

and you must provide the result type as the first argument.

Example

Create a new source code file named main.lisp and type the following code in it:

LISP

 72

(write-line (concatenate 'string "Are we not drawn onward, " "we few, drawn

onward to new era"))

When you execute the code, it returns the following result:

Are we not drawn onward, we few, drawn onward to new era

LISP

 73

Sequence is an abstract data type in LISP. Vectors and lists are the two concrete

subtypes of this data type. All the functionalities defined on sequence data type are

actually applied on all vectors and list types.

In this chapter, we will discuss most commonly used functions on sequences.

Before starting on various ways of manipulating sequences i.e., vectors and lists, let

us have a look at the list of all available functions.

Creating a Sequence

The function make-sequence allows you to create a sequence of any type. The syntax

for this function is:

make-sequence sqtype sqsize &key :initial-element

It creates a sequence of type sqtype and of length sqsize.

You may optionally specify some value using the :initial-element argument, then each

of the elements is initialized to this value.

Example

Create a new source code file named main.lisp and type the following code in it:

(write (make-sequence '(vector float)

 10

 :initial-element 1.0))

When you execute the code, it returns the following result:

#(1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0)

Generic Functions on Sequences

Function Description

elt It allows access to individual elements through an integer index.

18. SEQUENCES

LISP

 74

length It returns the length of a sequence.

subseq

It returns a sub-sequence by extracting the subsequence starting at a

particular index and continuing to a particular ending index or the end

of the sequence...

copy-seq It returns a sequence that contains the same elements as its argument.

fill It is used to set multiple elements of a sequence to a single value.

replace

It takes two sequences and the first argument sequence is destructively

modified by copying successive elements into it from the second

argument sequence.

count
It takes an item and a sequence and returns the number of times the

item appears in the sequence.

reverse
It returns a sequence containing the same elements of the argument

but in reverse order.

nreverse
It returns the same sequence containing the same elements as

sequence but in reverse order.

concatenate
It creates a new sequence containing the concatenation of any number

of sequences.

position
It takes an item and a sequence and returns the index of the item in

the sequence or nil.

find
It takes an item and a sequence. It finds the item in the sequence and

returns it. If the item is not found, then it returns nil.

sort
It takes a sequence and a two-argument predicate, and returns a sorted

version of the sequence.

merge
It takes two sequences and a predicate, and returns a sequence

produced by merging the two sequences according to the predicate.

map

It takes an n-argument function and nsequences and returns a new

sequence containing the result of applying the function to subsequent

elements of the sequences.

LISP

 75

some

It takes a predicate as an argument and iterates over the argument

sequence, and returns the first non-NIL value returned by the predicate

or returns false if the predicate is never satisfied.

every

It takes a predicate as an argument and iterates over the argument

sequence. It terminates by returning false, as soon as the predicate

fails. If the predicate is always satisfied, it returns true.

notany

It takes a predicate as an argument and iterates over the argument

sequence. It returns false as soon as the predicate is satisfied or true if

it is not satisfied.

notevery

It takes a predicate as an argument and iterates over the argument

sequence, and returns true as soon as the predicate fails or false if the

predicate is always satisfied.

reduce

It maps over a single sequence, applying a two-argument function first

to the first two elements of the sequence and then to the value returned

by the function and subsequent elements of the sequence.

search
It searches a sequence to locate one or more elements satisfying some

test.

remove
It takes an item and a sequence and returns the sequence with

instances of item removed.

delete

This also takes an item and a sequence and returns a sequence of the

same kind as the argument sequence that has the same elements

except the item.

substitute
It takes a new item, an existing item, and a sequence and returns a

sequence with instances of the existing item replaced with the new item.

nsubstitute

It takes a new item, an existing item, and a sequence and returns the

same sequence with instances of the existing item replaced with the

new item.

mismatch
It takes two sequences and returns the index of the first pair of

mismatched elements.

LISP

 76

Standard Sequence Function Keyword Arguments

Argument Meaning
Default

Value

:test
It is a two-argument function used to compare item or value

extracted by :key function to element.
EQL

:key
It is a one-argument function to extract key value from actual

sequence element. NIL means use element as it is.
NIL

:start Starting index (inclusive) of subsequence. 0

:end
Ending index (exclusive) of subsequence. NIL indicates end

of sequence.
NIL

:from-end
If true, the sequence will be traversed in reverse order, from

end to start.
NIL

:count
Number indicates the number of elements to remove or

substitute. NIL indicates all elements to remove or substitute.
NIL

We have just discussed various functions and keywords that are used as arguments in

the functions working on sequences. In the next chapters, we will see how to use these

functions, with examples.

Finding Length and Element

The length function returns the length of a sequence, and the elt function allows you

to access individual elements using an integer index.

Example

Create a new source code file named main.lisp and type the following code in it:

(setq x (vector 'a 'b 'c 'd 'e))

(write (length x))

(terpri)

(write (elt x 3))

LISP

 77

When you execute the code, it returns the following result:

5

D

Modifying Sequences

Some sequence functions allows iterating through the sequence and perform some

operations like, searching, removing, counting or filtering specific elements without

writing explicit loops.

The following example demonstrates this:

Example 1

Create a new source code file named main.lisp and type the following code in it:

(write (count 7 '(1 5 6 7 8 9 2 7 3 4 5)))

(terpri)

(write (remove 5 '(1 5 6 7 8 9 2 7 3 4 5)))

(terpri)

(write (delete 5 '(1 5 6 7 8 9 2 7 3 4 5)))

(terpri)

(write (substitute 10 7 '(1 5 6 7 8 9 2 7 3 4 5)))

(terpri)

(write (find 7 '(1 5 6 7 8 9 2 7 3 4 5)))

(terpri)

(write (position 5 '(1 5 6 7 8 9 2 7 3 4 5)))

When you execute the code, it returns the following result:

2

(1 6 7 8 9 2 7 3 4)

(1 6 7 8 9 2 7 3 4)

(1 5 6 10 8 9 2 10 3 4 5)

7

1

LISP

 78

Example 2

Create a new source code file named main.lisp and type the following code in it:

(write (delete-if #'oddp '(1 5 6 7 8 9 2 7 3 4 5)))

(terpri)

(write (delete-if #'evenp '(1 5 6 7 8 9 2 7 3 4 5)))

(terpri)

(write (remove-if #'evenp '(1 5 6 7 8 9 2 7 3 4 5) :count 1 :from-end t))

(terpri)

(setq x (vector 'a 'b 'c 'd 'e 'f 'g))

(fill x 'p :start 1 :end 4)

(write x)

When you execute the code, it returns the following result:

(6 8 2 4)

(1 5 7 9 7 3 5)

(1 5 6 7 8 9 2 7 3 5)

#(A P P P E F G)

Sorting and Merging Sequences

The sort function takes a sequence and a two-argument predicate, and it returns a

sorted version of the sequence.

Example 1

Create a new source code file named main.lisp and type the following code in it:

(write (sort '(2 4 7 3 9 1 5 4 6 3 8) #'<))

(terpri)

(write (sort '(2 4 7 3 9 1 5 4 6 3 8) #'>))

(terpri)

When you execute the code, it returns the following result:

(1 2 3 3 4 4 5 6 7 8 9)

(9 8 7 6 5 4 4 3 3 2 1)

LISP

 79

Example 2

Create a new source code file named main.lisp and type the following code in it:

(write (merge 'vector #(1 3 5) #(2 4 6) #'<))

(terpri)

(write (merge 'list #(1 3 5) #(2 4 6) #'<))

(terpri)

When you execute the code, it returns the following result:

#(1 2 3 4 5 6)

(1 2 3 4 5 6)

Sequence Predicates

The functions every, some, notany, and notevery are called the sequence predicates.

These functions iterate over sequences and test the boolean predicate. All these

functions take a predicate as the first argument and the remaining arguments are

sequences.

Example

Create a new source code file named main.lisp and type the following code in it:

(write (every #'evenp #(2 4 6 8 10)))

(terpri)

(write (some #'evenp #(2 4 6 8 10 13 14)))

(terpri)

(write (every #'evenp #(2 4 6 8 10 13 14)))

(terpri)

(write (notany #'evenp #(2 4 6 8 10)))

(terpri)

(write (notevery #'evenp #(2 4 6 8 10 13 14)))

(terpri)

When you execute the code, it returns the following result:

T

T

NIL

LISP

 80

NIL

T

Mapping Sequences

The map function allows you to apply a function on to subsequent elements of one or

more sequences.

The map function takes n-arguments function and n sequences and returns a new

sequence after applying the function to subsequent elements of the sequences.

Example

Create a new source code file named main.lisp and type the following code in it:

(write (map 'vector #'* #(2 3 4 5) #(3 5 4 8)))

When you execute the code, it returns the following result:

#(6 15 16 40)

LISP

 81

Lists had been the most important and the primary composite data structure in

traditional LISP. Presently, Common LISP provides other data structures like, vector,

hash table, classes or structures.

Lists are single linked lists. In LISP, lists are constructed as a chain of a simple record

structure named cons linked together.

The Cons Record Structure

Cons is a record structure containing two components called the car and the cdr. The

cons cells or cons are objects composed of pairs of values that are created using the

function cons.

The cons function takes two arguments and returns a new cons cell containing two

values. These values can be references to any kind of object. If the second value is not

nil, or it is another cons cell, then the values are printed as a dotted pair enclosed by

parentheses.

The two values in a cons cell are called the car and the cdr.The car function is used to

access the first value and the cdr function is used to access the second value.

Example

Create a new source code file named main.lisp and type the following code in it:

(write (cons 1 2))

(terpri)

(write (cons 'a 'b))

(terpri)

(write (cons 1 nil))

(terpri)

(write (cons 1 (cons 2 nil)))

(terpri)

(write (cons 1 (cons 2 (cons 3 nil))))

(terpri)

(write (cons 'a (cons 'b (cons 'c nil))))

(terpri)

(write (car (cons 'a (cons 'b (cons 'c nil)))))

19. LISTS

LISP

 82

(terpri)

(write (cdr (cons 'a (cons 'b (cons 'c nil)))))

When you execute the code, it returns the following result:

(1 . 2)

(A . B)

(1)

(1 2)

(1 2 3)

(A B C)

A

(B C)

The above example shows how you can use cons structures to create a single linked

list. Here, the list (A B C) consists of three cons cells linked together by their cdrs.

Diagrammatically, it could be expressed as:

Creating Lists with list Function in LISP

Although cons cells can be used to create lists, however, constructing a list out of

nested cons function calls cannot be the best solution. The list function is rather used

for creating lists in LISP.

The list function can take any number of arguments and as it is a function, it evaluates

its arguments.

The first and rest functions give the first element and the rest part of a list. The

following examples demonstrate the concepts.

Example 1

Create a new source code file named main.lisp and type the following code in it:

(write (list 1 2))

(terpri)

(write (list 'a 'b))

(terpri)

(write (list 1 nil))

(terpri)

(write (list 1 2 3))

LISP

 83

(terpri)

(write (list 'a 'b 'c))

(terpri)

(write (list 3 4 'a (car '(b . c)) (* 4 -2)))

(terpri)

(write (list (list 'a 'b) (list 'c 'd 'e)))

When you execute the code, it returns the following result:

(1 2)

(A B)

(1 NIL)

(1 2 3)

(A B C)

(3 4 A B -8)

((A B) (C D E))

Example 2

Create a new source code file named main.lisp and type the following code in it:

(defun my-library (title author rating availability)

 (list :title title :author author :rating rating :availabilty availability))

(write (getf (my-library "Hunger Game" "Collins" 9 t) :title))

When you execute the code, it returns the following result:

"Hunger Game"

List Manipulating Functions

The following table provides some commonly used list manipulating functions.

Function Description

car It takes a list as argument, and returns its first element.

cdr It takes a list as argument, and returns a list without the first element.

LISP

 84

cons
It takes two arguments, an element and a list, and returns a list with the

element inserted at the first place.

list
It takes any number of arguments and returns a list with the arguments

as member elements of the list.

append It merges two or more lists into one.

last It takes a list and returns a list containing the last element.

member

It takes two arguments of which the second must be a list, if the first

argument is a member of the second argument, and then it returns the

remainder of the list beginning with the first argument.

reverse It takes a list and returns a list with the top elements in reverse order.

Note that all sequence functions are applicable to lists.

Example 3

Create a new source code file named main.lisp and type the following code in it:

(write (car '(a b c d e f)))

(terpri)

(write (cdr '(a b c d e f)))

(terpri)

(write (cons 'a '(b c)))

(terpri)

(write (list 'a '(b c) '(e f)))

(terpri)

(write (append '(b c) '(e f) '(p q) '() '(g)))

(terpri)

(write (last '(a b c d (e f))))

(terpri)

(write (reverse '(a b c d (e f))))

When you execute the code, it returns the following result:

LISP

 85

A

(B C D E F)

(A B C)

(A (B C) (E F))

(B C E F P Q G)

((E F))

((E F) D C B A)

Concatenation of car and cdr Functions

The car and cdr functions and their combination allows extracting any particular

element/member of a list. However, sequences of car and cdr functions could be

abbreviated by concatenating the letter a for car and d for cdr within the letters c and

r. For example, we can write cadadr to abbreviate the sequence of function calls - car

cdr car cdr.

Thus, (cadadr '(a (c d) (e f g))) returns d

Example 4

Create a new source code file named main.lisp and type the following code in it:

(write (cadadr '(a (c d) (e f g))))

(terpri)

(write (caar (list (list 'a 'b) 'c)))

(terpri)

(write (cadr (list (list 1 2) (list 3 4))))

(terpri)

When you execute the code, it returns the following result:

D

A

(3 4)

LISP

 86

In LISP, a symbol is a name that represents data objects and interestingly, the name

itself is a data object.

What makes symbols special is that they have a component called the property

list, or plist.

Property Lists

LISP allows you to assign properties to symbols. For example, let us have a 'person'

object. We would like this 'person' object to have properties like name, gender, height,

weight, address, profession etc. A property is nothing but an attribute name.

A property list is implemented as a list with an even number (possibly zero) of

elements. Each pair of elements in the list constitutes an entry, in which the first item

is the indicator, and the second is the value. When a symbol is created, its property

list is initially empty. Properties are created by using get within a setf form.

For example, the following statements allow us to assign properties title, author,

publisher, and their respective values, to an object (symbol) named 'book'.

Example 1

Create a new source code file named main.lisp and type the following code in it:

((write (setf (get 'books'title) '(Gone with the Wind)))

(terpri)

(write (setf (get 'books 'author) '(Margaret Michel)))

(terpri)

(write (setf (get 'books 'publisher) '(Warner Books)))

When you execute the code, it returns the following result:

(GONE WITH THE WIND)

(MARGARET MICHEL)

(WARNER BOOKS)

Various property list functions allow you to assign properties as well as retrieve, replace

or remove the properties of a symbol.

20. SYMBOLS

LISP

 87

The get function returns the property list of symbol for a given indicator. It has the

following syntax:

get symbol indicator &optional default

The get function looks for the property list of the given symbol for the specified

indicator. If the symbol is found, then it returns the corresponding value. Otherwise, it

returns specified default value. If default value is not specified, it returns nil.

Example 2

Create a new source code file named main.lisp and type the following code in it:

(setf (get 'books 'title) '(Gone with the Wind))

(setf (get 'books 'author) '(Margaret Micheal))

(setf (get 'books 'publisher) '(Warner Books))

(write (get 'books 'title))

(terpri)

(write (get 'books 'author))

(terpri)

(write (get 'books 'publisher))

When you execute the code, it returns the following result:

(GONE WITH THE WIND)

(MARGARET MICHEAL)

(WARNER BOOKS)

The symbol-plist function allows you to see all the properties of a symbol.

Example 3

Create a new source code file named main.lisp and type the following code in it:

(setf (get 'annie 'age) 43)

(setf (get 'annie 'job) 'accountant)

(setf (get 'annie 'sex) 'female)

(setf (get 'annie 'children) 3)

(terpri)

(write (symbol-plist 'annie))

LISP

 88

When you execute the code, it returns the following result:

(CHILDREN 3 SEX FEMALE JOB ACCOUNTANT AGE 43)

The remprop function removes the specified property from a symbol.

Example 4

Create a new source code file named main.lisp and type the following code in it:

(setf (get 'annie 'age) 43)

(setf (get 'annie 'job) 'accountant)

(setf (get 'annie 'sex) 'female)

(setf (get 'annie 'children) 3)

(terpri)

(write (symbol-plist 'annie))

(remprop 'annie 'age)

(terpri)

(write (symbol-plist 'annie))

When you execute the code, it returns the following result:

(CHILDREN 3 SEX FEMALE JOB ACCOUNTANT AGE 43)

(CHILDREN 3 SEX FEMALE JOB ACCOUNTANT)

LISP

 89

Vectors are one-dimensional arrays, therefore a subtype of array. Vectors and lists are

collectively called sequences. Therefore, all sequence generic functions and array

functions work on vectors too.

Creating Vectors

The vector function allows you to make fixed-size vectors with specific values. It takes

any number of arguments and returns a vector containing those arguments.

Let us see the example:

Example 1

Create a new source code file named main.lisp and type the following code in it:

(setf v1 (vector 1 2 3 4 5))

(setf v2 #(a b c d e))

(setf v3 (vector 'p 'q 'r 's 't))

(write v1)

(terpri)

(write v2)

(terpri)

(write v3)

When you execute the code, it returns the following result:

#(1 2 3 4 5)

#(A B C D E)

#(P Q R S T)

Note that LISP uses the #(...) syntax as the literal notation for vectors. You can use

this #(...) syntax to create and include literal vectors in your code.

However, these are literal vectors. Hence, modifying them is not defined in LISP.

Therefore,while programming, you should always use the vector function, or the more

general function make-array; to create vectors you plan to modify.

The make-array function is more generic way to create a vector. You can access the

vector elements using the aref function.

21. VECTORS

LISP

 90

Example 2

Create a new source code file named main.lisp and type the following code in it:

(setq a (make-array 5 :initial-element 0))

(setq b (make-array 5 :initial-element 2))

(dotimes (i 5)

 (setf (aref a i) i))

(write a)

(terpri)

(write b)

(terpri)

When you execute the code, it returns the following result:

#(0 1 2 3 4)

#(2 2 2 2 2)

Fill Pointer Argument

The make-array function allows you to create a resizable vector. The fill-

pointer argument of the function keeps track of the number of elements actually

stored in the vector. It is the index of the next position to be filled, when you add an

element to the vector.

The vector-push function allows you to add an element to the end of a resizable

vector. It increases the fill-pointer by 1.

The vector-pop function returns the most recently pushed item and decrements the

fill pointer by 1.

Example

Create a new source code file named main.lisp and type the following code in it:

(setq a (make-array 5 :fill-pointer 0))

(write a)

(vector-push 'a a)

(vector-push 'b a)

(vector-push 'c a)

(terpri)

(write a)

LISP

 91

(terpri)

(vector-push 'd a)

(vector-push 'e a)

;this will not be entered as the vector limit is 5

(vector-push 'f a)

(write a)

(terpri)

(vector-pop a)

(vector-pop a)

(vector-pop a)

(write a)

When you execute the code, it returns the following result:

#()

#(A B C)

#(A B C D E)

#(A B)

Vectors being sequences, all sequence functions are applicable for vectors. Please refer

the sequences chapter for vector functions.

LISP

 92

Common LISP does not provide a set data type. However, it provides number of

functions that allow set operations performed on a list.

You can add, remove, and search for items in a list, based on various criteria. You can

also perform various set operations like: union, intersection, and set difference.

Implementing Sets in LISP

Sets, like lists, are generally implemented in terms of cons cells. However, for this

very reason, the bigger the set becomes, the lesser efficient the set operations

becomes. You will understand this once we delve into the matter little

deeper.The adjoin function allows you to build up a set. It takes an item and a list

representing a set and returns a list representing the set containing the item and all

the items in the original set.

The adjoin function first looks for the item in the given list. If it is found, then it returns

the original list; otherwise it creates a new cons cell with its car as the item and

cdr pointing to the original list, and returns this new list.

The adjoin function also takes :key and :test keyword arguments. These arguments

are used for checking whether the item is present in the original list.

Since the adjoin function does not modify the original list, to make a change in the

list itself; you must either assign the value returned by adjoin to the original list, or

you may use the macro pushnew to add an item to the set.

Example

Create a new source code file named main.lisp and type the following code in it:

; creating myset as an empty list

(defparameter *myset* ())

(adjoin 1 *myset*)

(adjoin 2 *myset*)

; adjoin didn't change the original set

;so it remains same

(write *myset*)

(terpri)

(setf *myset* (adjoin 1 *myset*))

22. SET

LISP

 93

(setf *myset* (adjoin 2 *myset*))

;now the original set is changed

(write *myset*)

(terpri)

;adding an existing value

(pushnew 2 *myset*)

;no duplicate allowed

(write *myset*)

(terpri)

;pushing a new value

(pushnew 3 *myset*)

(write *myset*)

(terpri)

When you execute the code, it returns the following result:

NIL

(2 1)

(2 1)

(3 2 1)

Checking Membership

The member group of functions allows you to check whether an element is member

of a set or not.

The following syntaxes are used to check membership:

member item list &key :test :test-not :key

member-if predicate list &key :key

member-if-not predicate list &key :key

These functions search the given list for a given item that satisfies the test. If no such

item is found, then the functions return nil. Otherwise, the tail of the list with the

element as the first element is returned. The search is conducted at the top level only.

These functions can be used as predicates.

Example

LISP

 94

Create a new source code file named main.lisp and type the following code in it:

(write (member 'zara '(ayan abdul zara riyan nuha)))

(terpri)

(write (member-if #'evenp '(3 7 2 5/3 'a)))

(terpri)

(write (member-if-not #'numberp '(3 7 2 5/3 'a 'b 'c)))

When you execute the code, it returns the following result:

(ZARA RIYAN NUHA)

(2 5/3 'A)

('A 'B 'C)

Set Union

The union group of functions allows you to perform set union on two lists provided as

arguments to these functions on the basis of a test.

The following syntaxes are used for these functions:

union list1 list2 &key :test :test-not :key

nunion list1 list2 &key :test :test-not :key

The union function takes two lists and returns a new list containing all the elements

present in either of the lists. If there are duplications, then only one copy of the

member is retained in the returned list.

The nunion function performs the same operation but may destroy the argument lists.

Example

Create a new source code file named main.lisp and type the following code in it:

(setq set1 (union '(a b c) '(c d e)))

(setq set2 (union '(#(a b) #(5 6 7) #(f h))

 '(#(5 6 7) #(a b) #(g h)) :test-not #'mismatch))

(setq set3 (union '(#(a b) #(5 6 7) #(f h))

 '(#(5 6 7) #(a b) #(g h))))

(write set1)

(terpri)

LISP

 95

(write set2)

(terpri)

(write set3)

When you execute the code, it returns the following result:

(A B C D E)

(#(F H) #(5 6 7) #(A B) #(G H))

(#(A B) #(5 6 7) #(F H) #(5 6 7) #(A B) #(G H))

Note that the union function does not work as expected without :test-not

#'mismatch arguments for a list of three vectors. This is because, the lists are made

of cons cells and although the values look same to us apparently, the cdr part of cells

does not match, so they are not exactly same to LISP interpreter/compiler. This is the

reason for not advising large sets implementation using lists. It works fine for small

sets though.

Set Intersection

The intersection group of functions allows you to perform intersection on two lists

provided as arguments to these functions on the basis of a test.

The following are the syntaxes of these functions:

intersection list1 list2 &key :test :test-not :key

nintersection list1 list2 &key :test :test-not :key

These functions take two lists and return a new list containing all the elements present

in both argument lists. If either list has duplicate entries, the redundant entries may

or may not appear in the result.

Example

Create a new source code file named main.lisp and type the following code in it:

(setq set1 (intersection '(a b c) '(c d e)))

(setq set2 (intersection '(#(a b) #(5 6 7) #(f h))

 '(#(5 6 7) #(a b) #(g h)) :test-not #'mismatch))

(setq set3 (intersection '(#(a b) #(5 6 7) #(f h))

 '(#(5 6 7) #(a b) #(g h))))

(write set1)

LISP

 96

(terpri)

(write set2)

(terpri)

(write set3)

When you execute the code, it returns the following result:

(C)

(#(A B) #(5 6 7))

NIL

The nintersection function is the destructive version of intersection, i.e., it may

destroy the original lists.

Set Difference

The set-difference group of functions allows you to perform set difference on two lists

provided as arguments to these functions on the basis of a test.

The following syntaxes are used for these functions:

set-difference list1 list2 &key :test :test-not :key

nset-difference list1 list2 &key :test :test-not :key

The set-difference function returns a list of elements of the first list that do not appear

in the second list.

Example

Create a new source code file named main.lisp and type the following code in it:

(setq set1 (set-difference '(a b c) '(c d e)))

(setq set2 (set-difference '(#(a b) #(5 6 7) #(f h))

 '(#(5 6 7) #(a b) #(g h)) :test-not #'mismatch))

(setq set3 (set-difference '(#(a b) #(5 6 7) #(f h))

 '(#(5 6 7) #(a b) #(g h))))

(write set1)

(terpri)

(write set2)

(terpri)

(write set3)

LISP

 97

When you execute the code, it returns the following result:

(A B)

(#(F H))

(#(A B) #(5 6 7) #(F H))

LISP

 98

You can build tree data structures from cons cells, as lists of lists. To implement tree

structure, you need to design functionalities that can traverse through the cons cells,

in a specific order. For example, pre-order, in-order, and post-order for binary trees.

Tree as List of Lists

Let us consider a tree structure made up of cons cell that forms the following list of

lists:

((1 2) (3 4) (5 6)).

Diagrammatically, it can be expressed as:

Tree Functions in LISP

Although mostly you will need to write your own tree-functionalities according to your

specific need, LISP provides some tree functions that you can use.

Apart from all the list functions, the following functions work especially on tree

structures:

Function Description

copy-tree x

&optional vecp

It returns a copy of the tree of cons cells x. it recursively copies

both the car and the cdr directions. If x is not a cons cell, the

function simply returns x unchanged. If the optional vecp argument

is true, this function copies vectors (recursively) as well as cons

cells.

23. TREE

LISP

 99

tree-equal x y

&key :test :test-

not :key

It compares two trees of cons cells. If x and y are both cons cells,

their cars and cdrs are compared recursively. If neither x nor y is

a cons cell, they are compared by eql, or according to the specified

test. The :key function, if specified, is applied to the elements of

both trees.

subst new old

tree &key :test

:test-not :key

It substitutes occurrences of given old item with new item, in tree,

which is a tree of cons cells.

nsubst new old

tree &key :test

:test-not :key

It works same as subst, but it destroys the original tree.

sublis alist tree

&key :test :test-

not :key

It works like subst, except that it takes an association list alist of

old-new pairs. Each element of the tree (after applying the :key

function, if any), is compared with the cars of alist; if it matches,

it is replaced by the corresponding cdr.

nsublis alist tree

&key :test :test-

not :key

It works same as sublis, but a destructive version.

Example 1

Create a new source code file named main.lisp and type the following code in it:

(setq lst (list '(1 2) '(3 4) '(5 6)))

(setq mylst (copy-list lst))

(setq tr (copy-tree lst))

(write lst)

(terpri)

(write mylst)

(terpri)

(write tr)

When you execute the code, it returns the following result:

LISP

 100

((1 2) (3 4) (5 6))

((1 2) (3 4) (5 6))

((1 2) (3 4) (5 6))

Example 2

Create a new source code file named main.lisp and type the following code in it:

(setq tr '((1 2 (3 4 5) ((7 8) (7 8 9)))))

(write tr)

(setq trs (subst 7 1 tr))

(terpri)

(write trs)

When you execute the code, it returns the following result:

((1 2 (3 4 5) ((7 8) (7 8 9))))

((7 2 (3 4 5) ((7 8) (7 8 9))))

Building Your Own Tree

Let us try to build our own tree, using the list functions available in LISP.

Creating a new node that contains some data

(defun make-tree (item)

 "it creates a new node with item."

 (cons (cons item nil) nil))

Adding a Child Node into a Tree

It takes two tree nodes and adds the second tree as a child of the first.

(defun add-child (tree child)

 (setf (car tree) (append (car tree) child))

 tree)

This function returns the first child of a given tree. It takes a tree node and returns the

first child of that node. It returns nil, if this node does not have any child node.

(defun first-child (tree)

 (if (null tree)

LISP

 101

 nil

 (cdr (car tree))))

This function returns the next sibling of a given node. It takes a tree node as argument,

and returns a reference to the next sibling node, or nil, if the node does not have any

sibling.

(defun next-sibling (tree)

 (cdr tree))

Lastly, we need a function to return the information in a node.

(defun data (tree)

 (car (car tree)))

Example

Create a new source code file named main.lisp and type the following code in it:

(defun make-tree (item)

 "it creates a new node with item."

 (cons (cons item nil) nil))

 (defun first-child (tree)

 (if (null tree)

 nil

 (cdr (car tree))))

 (defun next-sibling (tree)

 (cdr tree))

(defun data (tree)

 (car (car tree)))

 (defun add-child (tree child)

 (setf (car tree) (append (car tree) child))

 tree)

(setq tr '((1 2 (3 4 5) ((7 8) (7 8 9)))))

(setq mytree (make-tree 10))

(write (data mytree))

(terpri)

(write (first-child tr))

LISP

 102

(terpri)

(setq newtree (add-child tr mytree))

(terpri)

(write newtree)

When you execute the code, it returns the following result:

10

(2 (3 4 5) ((7 8) (7 8 9)))

((1 2 (3 4 5) ((7 8) (7 8 9)) (10)))

LISP

 103

The hash table data structure represents a collection of key-and-value pairs that are

organized based on the hash code of the key. It uses the key to access the elements

in the collection.

A hash table is used when you need to access elements by using a key, and you can

identify a useful key value. Each item in the hash table has a key/value pair. The key

is used to access the items in the collection.

Creating Hash Table in LISP

In Common LISP, has table is a general-purpose collection. You can use arbitrary

objects as a key or indexes.

When you store a value in a hash table, you make a key-value pair, and store it under

that key. Later, you can retrieve the value from the hash table using the same key.

Each key maps to a single value, though you can store a new value in a key.

Hash tables, in LISP, could be categorized into three types, based on the way the keys

are compared - eq, eql or equal. If the hash table is hashed on LISP objects then the

keys are compared with eq or eql. If the hash table hash on tree structure, then it is

compared using equal.

The make-hash-table function is used for creating a hash table.

Syntax for make-hash-table:

make-hash-table &key :test :size :rehash-size :rehash-threshold

Where,

 The key argument provides the key.

 The :test argument determines how keys are compared - it should have one of

three values #'eq, #'eql, or #'equal, or one of the three symbols eq, eql, or

equal. If not specified, eql is assumed.

 The :size argument sets the initial size of the hash table. This must be an integer

greater than zero.

 The :rehash-size argument specifies the amount by which the size of the hash

table can be increased when it becomes full. This can be an integer greater than

zero, which is the number of entries to add, or it can be a floating-point number

24. HASH TABLE

LISP

 104

greater than 1, which is the ratio of the new size to the old size. The default

value for this argument is implementation-dependent.

 The :rehash-threshold argument specifies how full the hash table can get before

it must grow. This must be an integer greater than zero and less than the

:rehash-size (it is scaled whenever the table is grown), or it can be a floating-

point number between zero and 1. The default value for this argument is

implementation-dependent.

You can also call the make-hash-table function with no arguments.

Retrieving Items from Hash Table

The gethash function retrieves an item from the hash table by searching for its key. If

it does not find the key, then it returns nil.

Syntax for gethash function:

gethash key hash-table &optional default

where,

 key: is the associated key

 hash-table: is the hash-table to be searched

 default: is the value to be returned, if the entry is not found, which is nil, if not

specified.

The gethash function actually returns two values, the second being a predicate value

that is true if an entry was found, and false if no entry was found.

Adding Items into Hash Table

For adding an item to the hash table, you can use the setf function along with

the gethash function.

Example

Create a new source code file named main.lisp and type the following code in it:

(setq empList (make-hash-table))

(setf (gethash '001 empList) '(Charlie Brown))

(setf (gethash '002 empList) '(Freddie Seal))

(write (gethash '001 empList))

(terpri)

LISP

 105

(write (gethash '002 empList))

When you execute the code, it returns the following result:

(CHARLIE BROWN)

(FREDDIE SEAL)

Removing an Entry from Hash Table

The remhash function removes any entry for a specific key in hash-table. This is a

predicate that is true if there was an entry, or false if there was not.

Syntax for remhash function:

remhash key hash-table

Example

Create a new source code file named main.lisp and type the following code in it:

(setq empList (make-hash-table))

(setf (gethash '001 empList) '(Charlie Brown))

(setf (gethash '002 empList) '(Freddie Seal))

(setf (gethash '003 empList) '(Mark Mongoose))

(write (gethash '001 empList))

(terpri)

(write (gethash '002 empList))

(terpri)

(write (gethash '003 empList))

(remhash '003 empList)

(terpri)

(write (gethash '003 empList))

When you execute the code, it returns the following result:

(CHARLIE BROWN)

(FREDDIE SEAL)

(MARK MONGOOSE)

NIL

LISP

 106

Applying a Specified Function on Hash Table

The maphash function allows you to apply a specified function on each key-value pair

on a hash table.

It takes two arguments - the function and a hash table. It invokes the function once

for each key/value pair in the hash table.

Example

Create a new source code file named main.lisp and type the following code in it:

(setq empList (make-hash-table))

(setf (gethash '001 empList) '(Charlie Brown))

(setf (gethash '002 empList) '(Freddie Seal))

(setf (gethash '003 empList) '(Mark Mongoose))

(maphash #'(lambda (k v) (format t "~a => ~a~%" k v)) empList)

When you execute the code, it returns the following result:

3 => (MARK MONGOOSE)

2 => (FREDDIE SEAL)

1 => (CHARLIE BROWN)

LISP

 107

Common LISP provides numerous input-output functions. We have already used the

format function, and print function for output. In this chapter, we will look into some

of the most commonly used input-output functions provided in LISP.

Input Functions

The following table provides the most commonly used input functions of LISP:

Sr.

No.
Functions and Descriptions

1

read &optional input-stream eof-error-p eof-value recursive-p

It reads in the printed representation of a LISP object from input-stream,

builds a corresponding LISP object, and returns the object.

2

read-preserving-whitespace &optional in-stream eof-error-p eof-

value recursive-p

It is used in some special situations where it is desirable to determine

precisely which character terminated the extended token.

3
read-line &optional input-stream eof-error-p eof-value recursive-p

It reads a line of text terminated by a newline.

4
read-char &optional input-stream eof-error-p eof-value recursive-p

It takes one character from input-stream and returns it as a character object.

5

unread-char character &optional input-stream

It puts the character most recently read from the input-stream, onto the

front of input-stream.

6

peek-char &optional peek-type input-stream eof-error-p eof-value

recursive-p

It returns the next character to be read from input-stream, without actually

removing it from the input stream.

25. INPUT & OUTPUT

LISP

 108

7

listen &optional input-stream

The predicate listen is true if there is a character immediately available from

input-stream, and is false if not.

8

read-char-no-hang &optional input-stream eof-error-p eof-value

recursive-p

It is similar to read-char, but if it does not get a character, it does not wait

for a character, but returns nil immediately.

9
clear-input &optional input-stream

It clears any buffered input associated with input-stream.

10

read-from-string string &optional eof-error-p eof-value &key :start

:end :preserve-whitespace

It takes the characters of the string successively and builds a LISP object

and returns the object. It also returns the index of the first character in the

string not read, or the length of the string (or, length +1), as the case may

be.

11

parse-integer string &key :start :end :radix :junk-allowed

It examines the substring of string delimited by :start and :end (default to

the beginning and end of the string). It skips over whitespace characters

and then attempts to parse an integer.

12

read-byte binary-input-stream &optional eof-error-p eof-value

It reads one byte from the binary-input-stream and returns it in the form of

an integer.

Reading Input from Keyboard

The read function is used for taking input from the keyboard. It may not take any

argument.

Example

Consider the following code snippet:

(write (+ 15.0 (read)))

LISP

 109

Assume the user enters 10.2 from the STDIN Input. Then the code returns:

25.2

The read function reads characters from an input stream and interprets them by

parsing as representations of LISP objects.

Example

Create a new source code file named main.lisp and type the following code in it:

; the function AreaOfCircle

; calculates area of a circle

; when the radius is input from keyboard

(defun AreaOfCircle()

(terpri)

(princ "Enter Radius: ")

(setq radius (read))

(setq area (* 3.1416 radius radius))

(princ "Area: ")

(write area))

(AreaOfCircle)

When you execute the code, it returns the following result:

Enter Radius: 5 (STDIN Input)

Area: 78.53999

Example

Create a new source code file named main.lisp and type the following code in it:

(with-input-from-string (stream "Welcome to Tutorials Point!")

 (print (read-char stream))

 (print (read-char stream))

 (print (read-char stream))

 (print (read-char stream))

 (print (read-char stream))

 (print (read-char stream))

 (print (read-char stream))

LISP

 110

 (print (read-char stream))

 (print (read-char stream))

 (print (read-char stream))

 (print (peek-char nil stream nil 'the-end))

 (values))

When you execute the code, it returns the following result:

#\W

#\e

#\l

#\c

#\o

#\m

#\e

#\Space

#\t

#\o

#\Space

Output Functions

All output functions in LISP take an optional argument called output-stream, where the

output is sent. If not mentioned or nil, output-stream defaults to the value of the

variable *standard-output*.

The following table provides the most commonly used output functions of LISP:

Sr. No. Functions and Descriptions

1

write object &key :stream :escape :radix :base :circle :pretty :level :length

:case :gensym :array

write object &key :stream :escape :radix :base :circle :pretty :level :length

:case :gensym :array :readably :right-margin :miser-width :lines :pprint-

dispatch

Both write the object to the output stream specified by :stream, which

defaults to the value of *standard-output*. Other values default to the

corresponding global variables set for printing.

LISP

 111

2

prin1object &optional output-stream

print object &optional output-stream

pprint object &optional output-stream

princ object &optional output-stream

All these functions output the printed representation of object to output-

stream. However, the following differences are there:

prin1 returns the object as its value.

print prints the object with a preceding newline and followed by a space. It

returns object.

pprint is just like print except that the trailing space is omitted.

princ is just like prin1 except that the output has no escape character

3

write-to-string object &key :escape :radix :base :circle :pretty :level :length

:case :gensym :array

write-to-stringobject &key :escape :radix :base :circle :pretty :level :length

:case :gensym :array :readably :right-margin :miser-width :lines :pprint-

dispatch

prin1-to-string object

princ-to-string object

The object is effectively printed and the output characters are made into a

string, which is returned.

4
write-char character &optional output-stream

It outputs the character to output-stream, and returns character.

5

write-string string &optional output-stream &key :start :end

It writes the characters of the specified substring of string to the output-

stream.

6
write-line string &optional output-stream &key :start :end

It works the same way as write-string, but outputs a newline afterwards.

7 terpri &optional output-stream

LISP

 112

It outputs a newline to output-stream.

8
fresh-line &optional output-stream

It outputs a newline only if the stream is not already at the start of a line.

9

finish-output &optional output-stream

force-output &optional output-stream

clear-output &optional output-stream

The function finish-output attempts to ensure that all output sent to output-

stream has reached its destination, and only then returns nil.

The function force-output initiates the emptying of any internal buffers but

returns nil without waiting for completion or acknowledgment.

The function clear-output attempts to abort any outstanding output

operation in progress in order to allow as little output as possible to continue

to the destination.

10
write-byte integer binary-output-stream

It writes one byte, the value of the integer.

Example

Create a new source code file named main.lisp and type the following code in it:

; this program inputs a numbers and doubles it

(defun DoubleNumber()

(terpri)

(princ "Enter Number : ")

(setq n1 (read))

(setq doubled (* 2.0 n1))

(princ "The Number: ")

(write n1)

(terpri)

(princ "The Number Doubled: ")

(write doubled)

)

(DoubleNumber)

LISP

 113

When you execute the code, it returns the following result:

Enter Number : 3456.78 (STDIN Input)

The Number: 3456.78

The Number Doubled: 6913.56

Formatted Output

The function format is used for producing well formatted text. It has the following

syntax:

format destination control-string &rest arguments

where,

 destination is standard output

 control-string holds the characters to be output and the printing directive.

A format directive consists of a tilde (~), optional prefix parameters separated by

commas, optional colon (:) and at-sign (@) modifiers, and a single character indicating

what kind of directive this is.

The prefix parameters are generally integers, notated as optionally signed decimal

numbers. The following table provides brief description of the commonly used

directives:

Directive Description

~A It is followed by ASCII arguments

~S It is followed by S-expressions

~D For decimal arguments

~B For binary arguments

~O For octal arguments

~X For hexadecimal arguments

~C For character arguments

~F For Fixed-format floating-point arguments.

LISP

 114

~E Exponential floating-point arguments

~$ Dollar and floating point arguments.

~% A new line is printed

~* Next argument is ignored

~?
Indirection. The next argument must be a string, and the one

after it a list.

Example

Let us rewrite the program for calculating area of circle:

Create a new source code file named main.lisp and type the following code in it:

(defun AreaOfCircle()

(terpri)

(princ "Enter Radius: ")

(setq radius (read))

(setq area (* 3.1416 radius radius))

(format t "Radius: = ~F~% Area = ~F" radius area)

)

(AreaOfCircle)

When you execute the code, it returns the following result:

Enter Radius: 10.234 (STDIN Input)

Radius: = 10.234

Area = 329.03473

LISP

 115

We discussed about how standard input and output is handled by common LISP. All

file iput-output functions work for reading from and writing into text and binary files.

Only difference is, the stream we use is not standard input or output, but it is a stream

created for the specific purpose of writing into or reading from files.

In this chapter, we will see how LISP can create, open, close text or binary files for

their data storage.

Opening Files

A file represents a sequence of bytes, be it a text file or binary file.

You can use the open function to create a new file or to open an existing file. It is the

most basic function for opening a file. However, the with-open-file is usually more

convenient and more commonly used.

When a file is opened, a stream object is constructed to represent it in the LISP

environment. All operations on the stream are equivalent to operations on the file.

Syntax for the open function is:

open filename &key :direction :element-type :if-exists :if-does-not-exist

:external-format

where,

 The filename argument is the name of the file to be opened or created.

 The keyword arguments specify the type of stream and error handling ways.

 The :direction keyword specifies whether the stream should handle input,

output, or both. It takes the following values:

o :input - for input streams (default value)

o :output - for output streams

o :io - for bidirectional streams

o :probe - for checking a existence of a file; the stream is opened and then

closed.

 The :element-type specifies the type of the unit of transaction for the stream.

26. FILE I/O

LISP

 116

 The :if-exists argument specifies the action to be taken if the :direction is

:output or :io and a file of the specified name already exists. If the direction

is:input or :probe, this argument is ignored. It takes the following values:

 :error - it signals an error.

 :new-version - it creates a new file with the same name but larger version

number.

 :rename - it renames the existing file.

 :rename-and-delete - it renames the existing file and then deletes it.

 :append - it appends to the existing file.

 :supersede - it supersedes the existing file means, new file is created to replace

old one.

 nil - it does not create a file or even a stream just returns nil to indicate failure.

 The :if-does-not-exist argument specifies the action to be taken if a file of the

specified name does not already exist. It takes the following values:

 :error - it signals an error.

 :create - it creates an empty file with the specified name and then uses it.

 nil - it does not create a file or even a stream. Instead, it simply returns nil to

indicate failure.

 The :external-format argument specifies an implementation-recognized

scheme for representing characters in files.

Example

Let us open a file named myfile.txt stored in the /tmp folder as:

(open "/tmp/myfile.txt")

Writing to and Reading from Files

The function with-open-file allows reading or writing into a file, using the stream

variable associated with the read/write transaction. Once the job is done, it

automatically closes the file. It is extremely convenient to use.

It has the following syntax:

with-open-file (stream filename {options}*)

 {declaration}* {form}*

LISP

 117

Where,

 filename is the name of the file to be opened. It may be a string, a pathname,

or a stream.

 The options are same as the keyword arguments to the function open.

Example 1

Create a new source code file named main.lisp and type the following code in it:

(with-open-file (stream "/tmp/myfile.txt" :direction :output)

 (format stream "Welcome to Tutorials Point!")

 (terpri stream)

 (format stream "This is a tutorials database")

 (terpri stream)

 (format stream "Submit your Tutorials, White Papers and Articles into our

Tutorials Directory."))

Please note that all input-output functions discussed in the previous chapter such as

terpri and format are working for writing into the file we created here.

When you execute the code, it does not return anything. However, the data is written

into the file. The :direction :output keywords allows us do this.

However, we can read from this file using the read-line function.

Example 2

Create a new source code file named main.lisp and type the following code in it:

(let ((in (open "/tmp/myfile.txt" :if-does-not-exist nil)))

 (when in

 (loop for line = (read-line in nil)

 while line do (format t "~a~%" line))

 (close in)))

When you execute the code, it returns the following result:

Welcome to Tutorials Point!

This is a tutorials database

Submit your Tutorials, White Papers and Articles into our Tutorials Directory.

LISP

 118

Closing a File

If you do not close an open file when you are done with it, every time program will

keep on leaking a new file handle and soon you will discover you are not able to create

new files anymore. Hence, it is important to close a file that you opened as a best

programming practice.

The close function closes a stream.

LISP

 119

Structures are the user-defined data type. They allow you to combine related data

items of different data types. You can access any of the components of a structure.

Structures are used to represent a record. Let us say you need to keep track of your

books in a library. You might want to track the following attributes about each book:

 Title

 Author

 Subject

 Book ID

Defining a Structure

The defstruct macro in LISP allows you to define an abstract record structure.

The defstruct statement defines a new data type, with more than one member for

your program.

To discuss the format of the defstruct macro, let us write the definition of the Book

structure. You can define the book structure as:

(defstruct book

 title

 author

 subject

 book-id

)

Note:

 The above declaration creates a book structure with four named components

namely title, author, subject and book-id. Thus, every object created as type

book will have all these components.

 It defines four functions named book-title, book-author, book-subject and book-

book-id, which take one argument, a book structure, and returns the field title,

author, subject and book-id of the book object. These functions are called

the access functions.

27. STRUCTURES

LISP

 120

 The symbol book becomes a data type and you can check it using

the typep predicate.

 There is an implicit function named book-p, which is a predicate. It is true if its

argument is a book and is false otherwise.

 Another implicit function named make-book is created, which is a constructor.

When it is invoked, it creates a data structure with four components, suitable to

be uses with the access functions.

 The #S syntax refers to a structure, and you can use it to read or print instances

of a book.

 An implicit function named copy-book of one argument is also defined that. It

takes a book object and creates another book object, which is a copy of the first

one. This function is called the copier function.

 You can use setf to alter the components of a book as given below:

(setf (book-book-id book3) 100)

Example

Create a new source code file named main.lisp and type the following code in it:

(defstruct book

 title

 author

 subject

 book-id

)

(setq book1 (make-book :title "C Programming"

 :author "Nuha Ali"

 :subject "C-Programming Tutorial"

 :book-id "478"))

(setq book2 (make-book :title "Telecom Billing"

 :author "Zara Ali"

 :subject "C-Programming Tutorial"

 :book-id "501"))

(write book1)

(terpri)

(write book2)

LISP

 121

(setq book3(copy-book book1))

(setf (book-book-id book3) 100)

(terpri)

(write book3)

When you execute the code, it returns the following result:

#S(BOOK :TITLE "C Programming" :AUTHOR "Nuha Ali" :SUBJECT "C-Programming

Tutorial" :BOOK-ID "478")

#S(BOOK :TITLE "Telecom Billing" :AUTHOR "Zara Ali" :SUBJECT "C-Programming

Tutorial" :BOOK-ID "501")

#S(BOOK :TITLE "C Programming" :AUTHOR "Nuha Ali" :SUBJECT "C-Programming

Tutorial" :BOOK-ID 100)

LISP

 122

In general term of programming languages, a package is designed for providing a way

to keep one set of names separate from another. The symbols declared in one package

do not conflict with the same symbols declared in another. This way, packages reduce

the naming conflicts between independent code modules.

The LISP reader maintains a table of all the symbols it has found. When it finds a new

character sequence, it creates a new symbol and stores in the symbol table. This table

is called a package.

The current package is referred by the special variable *package*. There are two

predefined packages in LISP:

common-lisp - it contains symbols for all the defined functions and variables.

common-lisp-user - it uses the common-lisp package and all other packages with

editing and debugging tools. It is called cl-user in short.

Package Functions in LISP

The following table provides most commonly used functions used for creating, using

and manipulating packages:

Sr. No. Functions and Descriptions

1
make-package package-name &key :nicknames :use

It creates and returns a new package with the specified package name.

2
in-package package-name &key :nicknames :use

I makes the package as current.

3

in-package name

This macro causes *package* to be set to the package named name,

which must be a symbol or string.

4

find-package name

It searches for a package. The package with that name or nickname is

returned; if no such package exists, find-package returns nil.

28. PACKAGES

LISP

 123

5
rename-package package new-name &optional new-nicknames

It renames a package.

6

list-all-packages

This function returns a list of all packages that currently exist in the LISP

system.

7
delete-package package

It deletes a package.

Creating a Package

The defpackage function is used for creating a user defined package. It has the

following syntax:

defpackage :package-name

 (:use :common-lisp ...)

 (:export :symbol1 :symbol2 ...))

Where,

 package-name is the name of the package.

 The :use keyword specifies the packages needed by this package i.e., packages

that define functions used by code in this package.

 The :export keyword specifies the symbols that are external in this package.

The make-package function is also used for creating a package. The syntax for this

function is:

make-package package-name &key :nicknames :use

The arguments and keywords has same meaning as explained before.

Using a Package

Once you have created a package, you can use the code in this package, by making it

the current package. The in-package macro makes a package current in the

environment.

LISP

 124

Example

Create a new source code file named main.lisp and type the following code in it:

(make-package :tom)

(make-package :dick)

(make-package :harry)

(in-package tom)

(defun hello ()

(write-line "Hello! This is Tom's Tutorials Point")

)

(hello)

(in-package dick)

(defun hello ()

(write-line "Hello! This is Dick's Tutorials Point")

)

(hello)

(in-package harry)

(defun hello ()

(write-line "Hello! This is Harry's Tutorials Point")

)

(hello)

(in-package tom)

(hello)

(in-package dick)

(hello)

(in-package harry)

(hello)

When you execute the code, it returns the following result:

Hello! This is Tom's Tutorials Point

Hello! This is Dick's Tutorials Point

Hello! This is Harry's Tutorials Point

LISP

 125

Deleting a Package

The delete-package macro allows you to delete a package. The following example

demonstrates this:

Example

Create a new source code file named main.lisp and type the following code in it:

(make-package :tom)

(make-package :dick)

(make-package :harry)

(in-package tom)

(defun hello ()

(write-line "Hello! This is Tom's Tutorials Point")

)

(in-package dick)

(defun hello ()

(write-line "Hello! This is Dick's Tutorials Point")

)

(in-package harry)

(defun hello ()

(write-line "Hello! This is Harry's Tutorials Point")

)

(in-package tom)

(hello)

(in-package dick)

(hello)

(in-package harry)

(hello)

(delete-package tom)

(in-package tom)

(hello)

When you execute the code, it returns the following result:

Hello! This is Tom's Tutorials Point

Hello! This is Dick's Tutorials Point

Hello! This is Harry's Tutorials Point

LISP

 126

*** - EVAL: variable TOM has no value

LISP

 127

This chapter explains Object Oriented condition handling and error handling in LISP.

In Common LISP terminology, exceptions are called conditions. In fact, conditions are

more general than exceptions in traditional programming languages. A

condition represents any occurrence of an event or an error, which might affect various

levels of function call stack. Conditions are capable of altering program flow or halting

program execution. They enforce programmers or users to take decisions. Errors are

a subset of conditions. The errors can be fatal, if they are not managed appropriately.

The condition handling system in LISP has three responsibilities:

1. Signaling a condition

2. Handling the condition

3. Restarting or continuing the program

Signaling a Condition

Signaling a condition means making the user aware of some occurrence of an event

through program execution. A condition can be announced by displaying message on

the screen or by beeping sound. When a condition is signaled, the signaling mechanism

finds the most recently established handler that is compatible with the condition type

and calls its function. Signaling a condition does not affect the program flow.

Handling a Condition

Let us take an example of handling a condition arising out of divide by zero condition.

You need to take the following steps for handling a condition:

 Define the condition - "A condition is an object whose class indicates the

general nature of the condition and whose instance data carries information

about the details of the particular circumstances that lead to the condition being

signaled". The define-condition macro is used for defining a condition, which

has the following syntax:

(define-condition condition-name (error)

 ((text :initarg :text :reader text)))

29. ERROR HANDLING

LISP

 128

MAKE-CONDITION macro creates new condition objects. It initializes the slots of the

new condition based on :initargs argument.

The following code defines the condition:

(define-condition on-division-by-zero (error)

 ((message :initarg :message :reader message)))

 Writing the Handlers - a condition handler is a code that is used for handling

the signaled condition thereon. It is generally written in one of the higher level

functions that call the erring function. When a condition is signaled, the signaling

mechanism searches for an appropriate handler based on the class of the

condition.

Each handler consists of:

o Type specifier that indicates the type of condition it can handle

o A function that takes a single argument, the condition

The macro handler-case establishes a condition handler. The basic form of a handler-

case:

(handler-case expression

 error-clause*)

Where, each error clause is of the form:

condition-type ([var]) code)

Restarting or Continuing the Program Execution

This is the code, which actually recovers your program from errors. The condition

handlers can then handle a condition by invoking an appropriate restart. The restart

code is generally place in middle-level or low-level functions and the condition handlers

are placed into the upper levels of the application.

The handler-bind macro allows you to provide a restart function, and to continue at

the lower level functions without unwinding the function call stack. In other words, the

flow of control still remains at the lower level function.

LISP

 129

The basic form of handler-bind is as follows:

(handler-bind (binding*) form*)

Where each binding is a list of the following:

 a condition type

 a handler function of one argument

The invoke-restart macro finds and invokes the most recently bound restart function

with the specified name as argument. You can have multiple restarts.

Example

In this example, we demonstrate the above concepts by writing a function named

division-function, which creates an error condition if the divisor argument is zero. We

have three anonymous functions that provide three ways to come out of it - by

returning a value 1, by sending a divisor 2 and recalculating, or by returning 1.

Create a new source code file named main.lisp and type the following code in it:

(define-condition on-division-by-zero (error)

 ((message :initarg :message :reader message)))

(defun handle-infinity ()

 (restart-case

 (let ((result 0))

 (setf result (division-function 10 0))

 (format t "Value: ~a~%" result))

 (just-continue () nil)))

 (defun division-function (value1 value2)

 (restart-case

 (if (/= value2 0)

 (/ value1 value2)

 (error 'on-division-by-zero :message "denominator is zero"))

 (return-zero () 0)

 (return-value (r) r)

 (recalc-using (d) (division-function value1 d))))

LISP

 130

 (defun high-level-code ()

 (handler-bind

 ((on-division-by-zero

 #'(lambda (c)

 (format t "error signaled: ~a~%" (message c))

 (invoke-restart 'return-zero)))

 (handle-infinity))))

 (handler-bind

 ((on-division-by-zero

 #'(lambda (c)

 (format t "error signaled: ~a~%" (message c))

 (invoke-restart 'return-value 1))))

 (handle-infinity))

 (handler-bind

 ((on-division-by-zero

 #'(lambda (c)

 (format t "error signaled: ~a~%" (message c))

 (invoke-restart 'recalc-using 2))))

 (handle-infinity))

 (handler-bind

 ((on-division-by-zero

 #'(lambda (c)

 (format t "error signaled: ~a~%" (message c))

 (invoke-restart 'just-continue))))

 (handle-infinity))

 (format t "Done."))

When you execute the code, it returns the following result:

error signaled: denominator is zero

Value: 1

error signaled: denominator is zero

Value: 5

LISP

 131

error signaled: denominator is zero

Done.

Apart from the condition system as discussed above, Common LISP also provides

various functions that may be called for signaling an error. Handling of an error, when

signaled, is however, implementation-dependent.

Error Signaling Functions in LISP

The user program specifies an error message. The functions process this message and

may or may not display it to the user.

The error messages should be constructed by applying the format function, should not

contain a newline character at either the beginning or end, and need not indicate error,

as the LISP system will take care of all these according to its preferred style.

The following table provides commonly used functions signaling warnings, breaks, non-

fatal and fatal errors.

Sr. No. Functions and Descriptions

1

error format-string &rest args

It signals a fatal error. It is impossible to continue from this kind of error;

thus error will never return to its caller.

2

cerror continue-format-string error-format-string &rest args

It signals an error and enters the debugger. However, it allows the

program to be continued from the debugger after resolving the error.

3
warn format-string &rest args

It prints an error message but normally does not go into the debugger.

4

break &optional format-string &rest args

It prints the message and goes directly into the debugger without allowing

any possibility of interception by programmed error-handling facilities.

Example

In this example, the factorial function calculates factorial of a number. However, if the

argument is negative, it raises an error condition.

Create a new source code file named main.lisp and type the following code in it:

LISP

 132

(defun factorial (x)

 (cond ((or (not (typep x 'integer)) (minusp x))

 (error "~S is a negative number." x))

 ((zerop x) 1)

 (t (* x (factorial (- x 1))))))

(write(factorial 5))

(terpri)

(write(factorial -1))

When you execute the code, it returns the following result:

120

*** - -1 is a negative number.

LISP

 133

Common LISP predated the advance of object-oriented programming by couple of

decades. However, the object-orientation was incorporated into it at a later stage.

Defining Classes

The defclass macro allows creating user-defined classes. It establishes a class as a

data type. It has the following syntax:

(DEFCLASS class-name (superclass-name*)

 (slot-description*)

 class-option*)

The slots are variables that store data, or fields.

A slot-description has the form (slot-name slot-option*), where each option is a

keyword followed by a name, expression and other options. Most commonly used slot

options are:

 :accessor function-name

 :initform expression

 :initarg symbol

For example, let us define a Box class, with three slots length, breadth, and height.

(defclass Box ()

(length

breadth

height))

Providing Access and Read/Write Control to a Slot

Unless the slots have values that can be accessed, read or written to, classes are pretty

useless. You can specify accessors for each slot when you define a class. For example,

refer our Box class:

(defclass Box ()

 ((length :accessor length)

30. COMMON LISP OBJECT SYSTEMS

LISP

 134

 (breadth :accessor breadth)

 (height :accessor height)))

You can also specify separate accessor names for reading and writing a slot.

(defclass Box ()

 ((length :reader get-length :writer set-length)

 (breadth :reader get-breadth :writer set-breadth)

 (height :reader get-height :writer set-height)))

Creating Instance of a Class

The generic function make-instance creates and returns a new instance of a class.

It has the following syntax:

(make-instance class {initarg value}*)

Example

Let us create a Box class, with three slots, length, breadth and height. We will use

three slot accessors to set the values in these fields.

Create a new source code file named main.lisp and type the following code in it:

(defclass box ()

 ((length :accessor box-length)

 (breadth :accessor box-breadth)

 (height :accessor box-height)))

(setf item (make-instance 'box))

(setf (box-length item) 10)

(setf (box-breadth item) 10)

(setf (box-height item) 5)

(format t "Length of the Box is ~d~%" (box-length item))

(format t "Breadth of the Box is ~d~%" (box-breadth item))

(format t "Height of the Box is ~d~%" (box-height item))

When you execute the code, it returns the following result:

Length of the Box is 10

Breadth of the Box is 10

LISP

 135

Height of the Box is 5

Defining a Class Method

The defmethod macro allows you to define a method inside the class. The following

example extends our Box class to include a method named volume.

Create a new source code file named main.lisp and type the following code in it:

(defclass box ()

 ((length :accessor box-length)

 (breadth :accessor box-breadth)

 (height :accessor box-height)

 (volume :reader volume)))

; method calculating volume

(defmethod volume ((object box))

 (* (box-length object) (box-breadth object)(box-height object)))

 ;setting the values

(setf item (make-instance 'box))

(setf (box-length item) 10)

(setf (box-breadth item) 10)

(setf (box-height item) 5)

; displaying values

(format t "Length of the Box is ~d~%" (box-length item))

(format t "Breadth of the Box is ~d~%" (box-breadth item))

(format t "Height of the Box is ~d~%" (box-height item))

(format t "Volume of the Box is ~d~%" (volume item))

When you execute the code, it returns the following result:

LISP

 136

Length of the Box is 10

Breadth of the Box is 10

Height of the Box is 5

Volume of the Box is 500

Inheritance

LISP allows you to define an object in terms of another object. This is

called inheritance. You can create a derived class by adding features that are new or

different. The derived class inherits the functionalities of the parent class.

The following example explains this:

Example

Create a new source code file named main.lisp and type the following code in it:

(defclass box ()

 ((length :accessor box-length)

 (breadth :accessor box-breadth)

 (height :accessor box-height)

 (volume :reader volume)))

; method calculating volume

(defmethod volume ((object box))

 (* (box-length object) (box-breadth object)(box-height object)))

;wooden-box class inherits the box class

(defclass wooden-box (box)

((price :accessor box-price)))

 ;setting the values

(setf item (make-instance 'wooden-box))

(setf (box-length item) 10)

(setf (box-breadth item) 10)

(setf (box-height item) 5)

(setf (box-price item) 1000)

; displaying values

LISP

 137

(format t "Length of the Wooden Box is ~d~%" (box-length item))

(format t "Breadth of the Wooden Box is ~d~%" (box-breadth item))

(format t "Height of the Wooden Box is ~d~%" (box-height item))

(format t "Volume of the Wooden Box is ~d~%" (volume item))

(format t "Price of the Wooden Box is ~d~%" (box-price item))

When you execute the code, it returns the following result:

Length of the Wooden Box is 10

Breadth of the Wooden Box is 10

Height of the Wooden Box is 5

Volume of the Wooden Box is 500

Price of the Wooden Box is 1000

